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Zizhen Yao talk on “Functional Prediction in E. Coli Based on Heterogenous Data”.

Review from Last Lecture

The TATA box is found in most organisms. We covered the weight matrix motif model which assumes
independent selection of each character in the motif and the background models.

Weight Matrix Example

Consider the 8 sequences of 3 characters. ATG is the start codon for mRNA transcription, so this is a
realistic (but not real) example of a motif (GTG also occurs sometimes as the start codon).

A T G
A T G
A T G
A T G
A T G
G T G
G T G
T T G

Which produces the following profile:

1 2 3
A 0.625 0 0
C 0 0 0
G 0.250 0 1
T 0.125 1 0

Assuming a background model where each character has an equal probability of 1/4, we obtain the following
Log Likelihood Ratios: Notice that the log likelihood ratio table has −∞ wherever the profile matrix had a
0.

log2
fxi,i

fxi
, fxi

= 1
4

1 2 3
A 1.32 −∞ −∞
C −∞ −∞ −∞
G 0 −∞ 2
T -1 2 −∞
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Nonuniform Background

E. Coli has DNA consisting of approximately equal amounts of A,C, G, T . But M. jannaschii has approx-
imately 68% A, T and 32% G, C. Consider the same motif profile as before, but with a background model
with fA = fT = 3

8 and fC = fG = 1
8 .

1 2 3
A 0.737 −∞ −∞
C −∞ −∞ −∞
G 1 −∞ 3
T -1.58 1.42 −∞

The table indicates, for example, that a G in position 3 is 23 = 8 times more likely to be part of the motif
than the background model.

Because G is now less likely in the background model we see that G is positions 1 and 3 have increased their
log likelihood ratios compared to the uniform background table.

Conversely, T is now more likely in the background model, so a T in position 2 has a reduced log likelihood
ratio (down from 2 in the previous table).

How “Informative” is a WMM?

Recall the formula for Relative Entropy

H(P ||Q) =
∑

x P (x) log2
P (x)
Q(x)

If x are fixed length sequences of characters, then P (x) is the probability of x occurring according to the
motif WMM, and Q(x) is the probability of x occurring according to the background model.

The term Lx = log2
P (x)
Q(x) is just the Log Likelihood Ratio for the sequence x. So Relative Entropy can be

viewed as:

H(P ||Q) =
∑

x P (x)Lx

That is, the expected Log Likelihood Ratio of a character string chosen from the motif’s distribution.

For the WMM model, we can show:

H(P ||Q) =
∑n

i=1 H(Pi||Qi)

Where Pi, Qi are distributions of the ith position. This follows from the assumption of independence.

Recall our example WMM:

1 2 3
A 0.625 0 0
C 0 0 0
G 0.250 0 1
T 0.125 1 0

Which produces the following relative entropy scores:

2



Total Relative Entropy
Uniform 1 2 3 H(P ||Q) =

∑3
i=1 H(Pi||Qi)

A 1.32 −∞ −∞
C −∞ −∞ −∞
G 0 −∞ 2
T -1 2 −∞

Relative Entropy, H(Pi||Qi) 0.701 2 2 4.701

Nonuniform 1 2 3
A 0.737 −∞ −∞
C −∞ −∞ −∞
G 1 −∞ 3
T -1.58 1.42 −∞

Relative Entropy, H(Pi||Qi) 0.512 1.42 3 4.932

It is worth noting that Relative Entropy is always non-negative, so adding additional characters to your
model will result in higher scores. Care must be taken when comparing relative entropy scores of sequences
of differing lengths to adjust for this bias towards longer sequences.

Pseudo-Counts

Are the −∞ entries in the log likelihood ratio tables a problem? If you are certain that a given residue never
occurs in a particular position of the motif, then yes −∞ is reasonable. It will ensure that any candidate
motif with that residue in that position will have an infinitely negative score.

In most cases, 0 counts and −∞ log likelihood ratios are a result of taking a small sample – a larger sample
would probably have uncovered a motif with that residue.

The typical fix is to add a small constant (0.5, 1, 2) to all the observed counts to produce a pseudo-count.
Note that if you have many observations, the pseudo count adjustments will have a relatively small affect
on the frequently observed data items.

This approach has some justification from a Bayesian viewpoint. You have a prior belief that there is almost
no chance that a given motif will never have a certain base in a certain position. The small constant added
to obtain pseudo-counts reflects that prior belief. A small sample resulting in an observed count of 0 can
only influence that prior belief to a small degree.

Question: Would anyone ever use negative log likelihood ratio cutoffs during a motif scan? Perhaps, for
example if the scan was to select a collection of (possibly weak) candidates which were to then undergo
further analysis. For example, you want to get all possible TATA-box candidates and then subject the
downstream sequence to some analysis to detect genes.

Questions

Given aligned instances of motifs, how do you build a model? Use frequency counts to build your WMM, as
above, optionally with pseudo counts.

Given a model, how do you find (probable) instances of the motif? Scan the candidate sequence, scoring
each substring with your model to obtain log likelihood ratios. Higher scoring substrings are likely to be
motifs.

Given unaligned strings thought to contain a motif, how do you find it? A good example is locating upstream
promoter regions in a collection of sequences believed to be co-regulated from a micro-array clustering
experiment. That’s the next topic.
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Motif Discovery: Three Approaches

There are manjy approaches, but I’ll only talk about the following three:

1. Greedy Search

2. Expectation Maximization

3. Gibbs Sampler

Finding a site of maximum relative entropy in a set of unaligned sequences is NP-Hard (Akutsu).

Motif discovery can also be used to find motifs in proteins.

Greedy Algorithm (Hertz & Stormo)

Input: Sequences s1, s2, ..., sk, motif length l, a breadth value d and background model.

Algorithm:

1. Create a singleton set with each length l subsequence of each of s1, s2, ..., sk.

2. For each set retained, add each possible length l subsequence not already present.

3. Compute relative entropy of each set and return d best.

4. Repeat until each set has k strings.

This greedy algorithm has all the usual problems with getting stuck in local minima, etc.

Expectation Maximization, MEME (Bailey & Elkan)

Input: Sequences s1, s2, ..., sk, motif length l and background model. Again, we assume 1 instance per
sequence, although variants to handle more than 1 are possible.

Observed data: the sequences si

Parameters: the WMM Θ

Hidden data: Where is the motif? Yij =
{

1 if it starts at position j in sequence i
0 otherwise

If you were given the WMM, it would be easy to scan and locate the motif locations. Similarly, if you were
given the motif locations (an alignment of the sequences) it would be easy to compute the WMM. As usual,
the EM algorithm alternates between these two.

Expectation Step

Given a WMM Θ and the input sequences si, compute expected value of the hidden variables Yik.

Ŷik = E(Yik|si,Θ)
= P (Yik = 1|si,Θ) (E = 1× P (1) + 0× P (0))
= P (si|Yik = 1,Θ)P (Yik=1|Θ)

P (si|Θ) (Bayes’ rule)
= cP (si|Yik = 1,Θ)
= c′Πl

j=1P (si,k+j−1|Θ)

We can replace the fraction P (Yik=1|Θ)
P (si|Θ) with a constant c because we assume the motif is equally likely

anywhere in the sequence. We fix c′ so that
∑

k Ŷik = 1.
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Maximization Step

Given parameter Θt at the tth iteration, find a new Θ which maximizes the expected value of the full data
likelihood. For simplicity, we assume all si are of the same length, and let n = |si| − l + 1.

Q(Θ|Θt) = EY ∼Θt [log P (s, Y |Θ)]
= EY ∼Θt [log

∏k
i=1 P (si, Yi|Θ)]

= EY ∼Θt [log
∏k

i=1(P (si|Yi,Θ) · P (Yi|Θ))]
= EY ∼Θt [log

∏k
i=1(P (si|Yi,Θ)/n)]

= EY ∼Θt [log
∏k

i=1((
∏n

j=1 P (si|Yij = 1,Θ)Yij )/n)]
= EY ∼Θt [

∑k
i=1(

∑n
j=1 Yij log P (si|Yij = 1,Θ)))]− k log n

=
∑k

i=1

∑n
j=1 EY ∼Θt [Yij ] log(P (si|Yij = 1,Θ))− k log n

=
∑k

i=1

∑n
j=1 Ŷij log(P (si|Yij = 1,Θ))− k log n

The second line above follows from the assumption that the k strings si are independent. The third line
follows from the definition of conditional probability, and the fourth from the assumption that all motif
positions are equally likely a priori. The fifth line is perhaps the most subtle. Each Yi is completely
determined by the unique j for which Yij = 1, and since all other Yij are zero, the product over j reduces
to the desired single term P (si|Yij = 1,Θ) for the unique j such that Yij = 1. The advantage of this is that
distributing the log in the next line brings the Yij out of the exponents, and we end up with a sum of easily
computed terms, weighted by the expected values of the Yij , exactly what we computed in the E-step. (This
trick of using indicator variables in exponents is common in EM algorithms.)

Finally, we’re left with the problem of finding the Θ that maximizes this expression. We leave it as an
exercise to show that it is maximized by the weight matrix model Θ obtained by “counting” frequencies in
the alignment, where counts are Ŷij . Essentially, we build the model by doing frequency counts as usual,
but weighting them by the E(Yij) (the expectation that the motif starts at each location).

In a sense, this is again a greedy algorithm, and definitely still has the possibility of converging on a local
but not global maximum; hopefully, the probalilistic weighting over all possible motif positions reduces this
danger.

Initialization

1. Buy a supercomputer (ie: the San Diego Super Computer center).

2. Try every motif-length substring from the input sequences as the initial Θ (WMM) weighted to 80%
(evenly distribute the other 20% across the other bases).

3. Run a few iterations of E-M from each starting Θ.

4. Run the best few to completion.

Question: What if the sequences contain repeated subsequences other than the one which is being sought?
That is very common, since DNA contains a lot of repetitive data (like the ALU repeat, for example). A
program called RepeatMasker is commonly used to preprocess sequences to remove all commonly known
repeats.

Gibbs Sampler (Next Lecture)

Given an initial alignment of k l-length sequences (one from each of the k input sequences):

1. Throw out one of them at random, say the one from sequence s.

2. Rescan sequence s (using the remaining k − 1 aligned sequences to build a WMM) and compute the
likelihood of that each l-length substring was generated by the motif.
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3. Randomly select an l-length substring from s to replace the evicted string. Each substring’s chance
of being selected is weighted by its probability of being generated by the motif (as determined by the
WMM).

4. Repeat till convergence.

6


