
CSE 527 Notes for Oct. 29 2003 taken by Charles E. Grant

Last  lecture  we began an examination  of model  based  clustering.  This  lecture will  be the technical
background leading to the Expectation Maximization (EM) algorithm.

Do gene expression data fit a Gaussian model? The central limit theorem implies that a variable which
is the sum of lots of random variables will have a Normal distribution, but a cell is not random Nonethe-
less it seems to work and a weak model is better than no model.

Probability Basics:
Discrete Example Continuous Example

Sample space 81, 2, ..., 6< !

Distribution p1, p2 , ... p6 ¥ 0, ⁄i=1
6 pi = 1 f HxL ¥ 0, Ÿ!

f HxL dx = 1
p1 = p2 =. .. = p6 = 1ÅÅÅÅ6 f HxL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p s2

 e-Hx-mL2 ê2 s2

Discrete Probability Distribution
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Population vs Sample

Population Mean Discrete Continuous
m = ⁄i i pi m = Ÿ x f HxL dx

Population Variance Discrete Continuous
s2 = ⁄i Hi - mL2  pi s2 = Ÿ Hx - mL2 f HxL dx

Sample Mean xêê = ⁄i=1
n xi ê n

Sample Variance sêêê2 = ⁄i=1
n Hxi - xêêL2 ê n

Parameter Estimation

Assume that  a data  x1, x2, ..., xn  are sampled from a parametric  distribution  f Hx » qL .  How do we
estimate q? For example the distribution 

f HxL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p s2
 e-Hx-mL2 ê2 s2

= f Hx, m, sL
is parameterized by m, s

The Maximum Likelihood Estimation is one of many parameter estimation techniques.

Assuming the data are independent, the likelihood of the data x1, x2, ..., xn  given the parameter q  is

LHx1, x2, ..., xn » qL = ¤i=1
n f Hxi » qL

Treating the likelihood L  as a function of q,  we ask what value of q  maximizes the likelihood. The
typical approach is to solve

∑ÅÅÅÅÅÅÅÅ∑ q  LHx1, x2, ..., xn » qL = 0
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or

∑ÅÅÅÅÅÅÅÅ∑ q  ln LHx1, x2, ..., xn » qL = 0

The properties of the logarithm make things easier to work with.

A likelihood is not a probability.

Example 1

Let x1, x2, ..., xn  be coin flips, and let q  be the probability of getting heads. Suppose we observe n0
tails and n1  heads (n0 + n1 = nL.

LHx1, x2, ..., xn » qL = H1 - qLn0  qn1

ln LHx1 , x2, ..., xn » qL = n0  ln H1 - qL + n1  ln q

∑ÅÅÅÅÅÅÅÅ∑ q  ln LHx1, x2, ..., xn » qL = -n0ÅÅÅÅÅÅÅÅÅÅ1-q + n1ÅÅÅÅÅÅÅq

Setting this equal to 0 and solving we get

-n0ÅÅÅÅÅÅÅÅÅÅ1-q + n1ÅÅÅÅÅÅÅq = 0

n1H1 - qL = n0  q

n1 = Hn0 + n1L q

n1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn0 +n1 L = q

n1ÅÅÅÅÅÅÅn = q

(The sign of 2nd derivative can then be checked to guarantee that this is a maximum not a minimum.
Likewise,  you can easily verify that the maximum is not attained at the boundaries  of the parameter
space, i.e. at q=0 or q=1.)  This estimate for the parameter of the distribution matches our intuition.

Example 2

Suppose xi ~ NHm, sL, s2 = 1 and m  unknown. Then

LHx1, x2, ..., xn » qL = ‰
i=1

n 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 e-Hxi -qL2 ê2

ln LHx1 , x2, ..., xn » qL = S
i=1

n I- 1ÅÅÅÅ2  ln 2 p - Hxi -qL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 M

∑ÅÅÅÅÅÅÅÅ∑ q  ln LHx1, x2, ..., xn » qL = ⁄i=1
n Hxi - qL = ⁄i=1

n xi - n q = 0
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So the value of q that maximizes the likelihood is

q = ⁄i=1
n xi ê n

The sample mean is the maximum likelihood estimator (MLE) for the population mean.

Example 3

Suppose xi ~ NHm, sL, s2  and m  unknown. Then

LHx1, x2, ..., xn » q1, q2L = ‰
i=1

n 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!2 pq2
 e-Hxi -q1 L2 ê2 q2

ln LHx1 , x2, ..., xn » q1 , q2 L = S
i=1

n I- 1ÅÅÅÅ2  ln 2 p q2 - Hxi -q1 L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q2

M
∑ÅÅÅÅÅÅÅÅÅÅ∑ q1

 ln LHx1, x2 , ..., xn » q1 , q2L = ‚
i=1

n Hxi -q1 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq2
= 0ï ⁄i=1

n xi ê n = q1

∑ÅÅÅÅÅÅÅÅÅÅ∑ q2
 ln LHx1, x2 , ..., xn » q1 , q2L =

S
i=1

n I- 1ÅÅÅÅ2  2 pÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p q2
+ Hxi -q1 L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q2
2 M = S

i=1

n I- 1ÅÅÅÅÅÅÅÅÅÅÅ2 q2
+ Hxi -q1 L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q2
2 M = 0ï ⁄i=1

n Hxi - q1 L2 ê n = q2

The MLE for the population variance is the sample variance. This is a biased estimator. It systemati-
cally underestimates the population variance, but is none the less the MLE. The MLE doesn't promise
an unbiased estimator but it is a reasonable approach.

Think of a more complex situation. Plot some data, say the height of some individuals. Is the distribu-
tion they come from this?
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Or is there some hidden variable, like gender, so the distribution should be more like this:
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Clustering: try to find if there are hidden parameters that cause the data to fall into two distributions
f1HxL, f2HxL .  These  distributions  depend  on some parameter  q:  f1Hx, qL, f2Hx, qL ,  and  there  are  also
mixing parameters t1  and t2 , t1 + t2 = 1,  which describe the probability of sampling from a group.
Can we estimate the parameters for the this more complex model? Let's suppose that the two groups are
normal but with different, unknown, parameters.

The likelihood is now given by

LHx1, x2, ..., xn » t1, t2, m1 , m2, s1, s2L = ¤i=1
n ⁄ j=1

2 t j  f j Hxi , qL
If we try to work with this in our existing framework it becomes messy and algebraically intractable,
and remains so even if we take the log of the likelihood.

This leads us to introduce the Expectation Maximization (EM) algorithm as a heuristic for finding the
MLE. It is particularly useful for problems containing a hidden variable. It uses a hill-climbing strategy
to find a local maximum of the likelihood.

Introduce a new variable

zij = : 0
1 iff xi œ dist. j

This variable is introduced for mathematical convenience. It lets us avoid a sum over j  in the expres-
sion for the likelihood. The full data table becomes

x1 z11 z12
x2 z21 z22
xn zn1 zn2

If the z  were known estimating t1, t2  would be easy, and estimation of the parameters would become
easy again. If we knew the parameters estimation of the z  would be easy. The EM algorithm iterates
over these alternatives.  It can be proved that the likelihood will be monotonically  increasing,  and so
will converge to a (local) maximum. [There is a polynomial  time algorithm for estimating Gaussian
mixtures under the assumption that the components are "well-separated.," but Ruzzo thinks the method
is  not  used  much  in  practice.   He doesn't  know whether  the  complexity  of the  general  problem is
known; plausibly it's NP-hard.  So, the EM algorithm is probably the method of choice.]
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Expectation  step

Assume fixed values for t j  and q j . Let A  be the event that xi  is drawn from the distribution f1 , let B
be the event that xi  is drawn from f2 , and let D  be the event that xi  is observed. We want PHA » DL , but
it is easier to find PHD » AL.  We use Bayes' rule:

PHA » DL = PHD»AL PHALÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPHDL
PHDL = PHD » AL PHAL + PHD » BL PHBL = t1  PHD » AL + t2  PHD » BL = t1  f1 Hxi » q1L + t2  f2Hxi » q2L

PHA » DL  is the expected value of zi1  given q1  and q2 . This is the expectation step of the EM algorithm.

To  be  concrete,  consider  a  sample  of  points  taken  from  a  mixture  of  Gaussian  distributions  with
unknown parameters and unknown mixing coefficients.  The EM algorithm will give estimates of the
parameters that raise the likelihood of the data.

An easy heuristic to apply is 

If EHzi1 L ¥ 1 ê 2 then set zi1 = 1
If EHzi1 L < 1 ê 2 then set zi1 = 0

This gives rise to the so-called Classification EM algorithm (we classify  each observation as coming
from exactly one of the component distributions).  The k-means clustering algorithm is an example.  In
this  case,  the  maximzation  step  is  just  like  the  simple  Maximum  Likelihood  Estimation  examples
considered  above.   The more general  M-step (below)  accounts  for the inherent  uncertainty  in these
classifications,  appropriately  weighting  the  contributions  of  each  observation  to  the  parameter  esti-
mates for each mixture component.

Maximization step

The expression for the likelihood is 

LHx1, z11, z12, x2 , z21, z22, ... » q, tL
The xi  are known. If the zij  were known finding the MLE of q, t would be easy, but we don't. Instead
we maximize the expected likelihood of the visible data EHLHx1, x2, ..., xn » q, tLL . The expectation is
taken over the distribution of the hidden variables zij . Assuming s1

2 = s2 = s2
2

LHx, z » q, tL = ‰
i=1

n 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!2 ps2
 e-1ê2 s2 H⁄ j=1

2 zij Hxi -m j L2 L
so
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EHln LHx, z » q, tLL = EI‚
i=1

n
- 1ÅÅÅÅ2  ln 2 ps2 - 1ÅÅÅÅÅÅÅÅÅÅÅ2 s2  ⁄ j=1

2  zij Hxi - m j L2  M =‚
i=1

n
- 1ÅÅÅÅ2  ln 2 ps2 - 1ÅÅÅÅÅÅÅÅÅÅÅ2 s2  ⁄ j=1

2  EHzij L Hxi - m j L2  M
And we calculated EHzij L  in the previous step. We can now solve for m j  that maximizes the expectation.

We have yet to show that this converges.
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