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1 General Idea

We assume that each cluster is generated by a multivariate normal distribution. Thus, our total dataset can be regarded as
a mixture of different distributions. We can assign two variables to every cluster k: the distribution’s mean vector µk and
its covariance matrix Σk. If we know the number of distributions (=clusters) and their means and (co-)variances, we can
calculate the probability that a specific point belongs to a certain cluster. Conversely, if we know the correct cluster for every
point, we can calculate the means and variances of the distributions for every cluster. A model based approach then works
similar to k-means:

1. Initialize, e.g. by assigning points randomly to clusters

2. Calculate means and covariances for every cluster

3. Calculate probabilities of cluster membership for every point and assign points to clusters with highest probability

4. Goto 2

Note: The Gaussian Mixture Model might be an oversimplification of reality, however it is nevertheless useful.
One problem of the algorithm is how to deal with points that lie in different clusters with roughly equal probability (hard
assignnment, probabilistic assignment, no classification?).

2 Mathematical Background

2.1 Variance and Covariance in 2-dimensional space

Variance varx = E((x − µx)2)
Covariance covxy = E((x − µx)(y − µy))
If x and y are independent, then covxy = 0. The covariance is a measure of the degree to which we can predict one value
(e.g. x) if we know the other (e.g. y).

2.2 Multivariate Gaussian distributions

f(x) =
1√

(2π)Ndet(Σ)
e−

1
2 (x−µ)T Σ−1(x−µ) (1)

where x = (x1, .., xN ) and Σ is the covariance matrix, which is defined by

Σ =

 cov11 cov12 · · ·
cov21 cov22 · · ·

...
...

. . .


The covariance matrix is symmetric and its diagonal entries are the variances. It can be written as the following composition
Σ = λDADT , where
λ is a real, that specifies the volume,
A is a diagonal matrix, that specifies the shape (how ellipsoid?) and
D is a unit matrix, that specifies the orientation of the cloud.

3 Models

The Σk = λkDkAkDk
T decomposition of the covariance matrix to a cluster k allows us to create simpler models with fewer

parameters. For example:
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1. Equal Volume Spherical Model (EI): Σk = λI
Here, all I have to calculate are the means and the common variance λ. Using this model is approximately equivalent
to using k-means.

2. Unequal Volume Spherical Model (VI): Σk = λkI
The clusters are spherical, but can have different sizes.

3. Diagonal Model: Σk = λkBk, where Bk is diagonal, |Bk| = 1. The clusters are elliptical, but parallel to the axes.

4. EEE Elliptical Model: Σk = λDADT . The clusters are elliptical, but the same covariance structure applies to all
clusters.

5. Unconstrained Model (VVV): Σk = λkDkAkDk
T .

4 The Algorithm: Expectation Maximization (EM)

We need an initial assignment of points to clusters (or alternatively initial estimates of the means and variances). After that
we iterate between the E and M steps:

• E step: Compute the probability of each observation belonging to each cluster using the current parameter estimates
(means and variances)

• M step: Estimate model parameters using the current group membership probabilities

The algorithm can get stuck in a local minimum (use random starts!). However, it is usually not a big problem in practice.

5 Model selection

5.1 The Bayesian Information Criterion (BIC)

With the BIC it is possible to evaluate the odds for one model against another model. More precisely, the BIC expresses
the likelihood that our dataset was generated by a given model (Notation: p(D|Mk), where D represents the dataset, and
Mk the model). Since models with more parameters will generally “fit” the data better, the BIC also includes a penalty for
the number of parameters so that we can at least roughly assess whether the improved fit justifies the increased number of
parameters.

BICk = 2 log p(D|Θ̂k,Mk) − vk log(n) ≈ 2 log p(D|Mk)

vk : number of parameters to be estimated in model Mk, and Θ̂k is the maximum likelihood estimate of the parameters Θk

However, the integrated likelihood p(D|Mk) is hard to evaluate.

5.2 Comparison of model-based clustering and heuristical approaches

Clusters were evaluated by using the BIC and Adjusted Rand index. The Adjusted Rand index compares clusters with
external critera. The BIC scores do not require external criteria. The quality of clusters found by model-based clustering
were compared to those found by the CAST and k-means algorithms. The used data sets comprised two real datasets

• Ovarian cancer data

• Yeast cell cycle data

and two synthetic data sets

• Gaussian mixture: Multivariate normal distributions with the sample covariance matrix and mean vectors of eachs class
in the ovary data were generated. This design destroys the specifics of the distributions, but keeps the covariances.

• Randomly resampled ovary data: Here, the specifics of the distributions (means, variances) were kept, but the covari-
ances ignored.

Since there was not enough data, it was impossible to maintain both, the specifics of the distributions and the covariances.
Randomly resampled data: The Adjusted Rand and the BIC both overwhelmingly favored the diagonal model (model-
based clustering).
Real ovary data: The Adjusted Rand favored EEE (model-based clustering) with 4 clusters. Also, the BIC scores of EEE
and the diagonal model had a local maximum at 4 clusters.
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Standardized yeast cell cycle data: The Adjusted Rand favored EI (model-based clustering) with 5 clusters. BIC
selected EEE at 5 clusters.
In general, on the synthetic data sets, model-based clustering was better than leading heuristic based clustering algorithms.
On real data sets, the Adjusted Rand indices were comparable to those of CAST, with the additional advantage that BIC
gave some indication of an appropriate number of clusters.
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