
Nils Gehlenborg (gehlenbo@u.washington.edu)

CSE 527 (Fall 2003) - Lecture Notes
October 22, 2003.

The goal is to introduce the CAST (cluster affinity search technique) clustering algorithm as described
in A. Ben-Dor, R. Shamir and Z. Yakhini,“Clustering Gene Expression Patterns”, Journal of Computa-
tional Biology, Vol. 6, No. 3/4 (1999), 281-297.

Lecture notes from a previous lecture on CAST given by Larry Ruzzo can be found on http://www.cs.wash-
ington.edu/education/courses/cse527/01au/ (10/25/2001).

Graphs

Graphsconsist of

• verticesand

• edgesconnecting the vertices.

Not all vertices have to be connected to other vertices and there might be no edges at all. Formally, a
graphG is defined by a set of verticesV and a set of egdesE, shortG(V,E).

Figure 1: A graph.

We can use graphs to model simple, pairwise relations. For instance, a graph could represent the associa-
tion between pairs of genes, where vertices represent genes and edges represent the association between
them (similar expression level, same regulatory sequences, ...).

Cliques

On graphs we can definecliques. A k-cliqueis a set ofk vertices, all directly connected to each other.
We can use graphs and cliques to find clusterings. We create a graph from our data (representing associ-
ations between genes, persons, ...) and then set out to find all cliques in that graph. Since graph theory
has been around for a long time, there exist algorithms which perform that task. However, the problem
is that the number of possible cliques in a graph is growing exponentially. The general formula for the
number ofk-cliques in a graph withn vertices is(

n
k

)
=

n!
k!(n−k)!

≥
(n

k

)k
.

1

Figure 2: Two (overlapping) cliques in the graph from Figure 1. A 5-clique (blue) and a 3-clique (yellow)
are highlighted. Note that two-colored vertices belong to both of the highlighted cliques and that that
eachk-clique contains(k−1)-cliques.

A simple and straightforward approach to clique-finding is a brute force algorithm that tries all possible
cliques. There exist also faster clique-finding algorithms, but unfortunately there is no clique-finding
algorithm that runs in polynomial time. Clique-finding isNP-complete and thus there will be no poly-
nomial time algorithm exceptP = NP, which is quite unlikely.

Polynomial vs exponential growth and asymptotic analysis

Algorithms with an exponential runtimemayperform better than a polynomial time algorithm, but only
up to a distinct problem size. While algorithms with polynomial runtime are usually practicable, algo-
rithms with exponential runtime rarely are.
If we want to analyze the runtime of an algorithm in the worst case, we employasymptotic analysis.
Asymptotic analysis helps us to determine how the runtime of an algorithm changes as a function of
problem size. Commonly this is expressed using thebig-O notation.

Definition f (n) = O(g(n)) iff there is a constantc such that| f (n)| ≤ c ·g(n) for all sufficiently large
n. n is the problem size.

Examples for the big-O notation are given below.

• 2·n2 = O(n2)

• 100·n2 +100·n+100= O(n2)

• 22n = O(22n)

• n2 = O(22n), but 22n 6= O(n2)!

The bounds given by the big-O notation help us to quickly identify promising algorithm candidates.

Finding cliques in noisy data

Clustering based on cliques is highly sensitive to noise in the data. If we want to do clustering based on
cliques anyways, we have to find a way to overcome the problems caused by noisy data. The following
describes the problem.

2

• Given a graphH that is a collection of (large) cliques, we corrupt each edge/non-edge with a
probability ofα < 0.5. That is to simulate noise1.

• We call the resulting graphG.

• Find an approximateH ′ givenG as input.

This problem is even harder than clique-finding, as we have to find cliques that are corrupted by noise.
To solve this, we have to make a simplifying assumption described in the next section.

Finding disjoint cliques in noisy data

To simplify the search for cliques, we will only consider disjoint cliques, i.e. cliques that do not overlap.
The problem is the following.

• Given a graphH that is adisjunctcollection of (large) cliques, we corrupt each edge/non-edge
with a probability ofα < 0.5.

• We call the resulting graphG.

• Find an approximateH ′ givenG as input.

• We are successful if|H ′⊕G| ≤ |H ⊕G|.2

If we didn’t consider noise, the problem of finding disjoint cliques in a graph is easy. However, the noise
gives us a hard time, but we are still able get pretty good results.
The paper of Ben-Dor et al. features several figures that show that large cliques are better reconstructible
under these conditions than small ones, since there is more information available about them.

Main results

Ben-Dor et al. found that for allα ≤ 0.5, ε > 0 andδ > 0 there is an algorithmA and a constantc
(dependent onα, ε andδ) such that for all clique graphsH with disjoint cliques of minimum size at least
nε, A successfully recoversH ′ from theα-corrupted versionG of H with probability> 1−δ, running in
timeO(n2 log(n)c). A is deterministic.
Here it becomes clear why we can’t reliably reconstruct small cliques. Ben-Dor et al. found that for
“reasonable” choices of parameters likeε = 0.1 andα = 0.25 the analysis yieldsc< 600. If we consider
the runtime forc = 600,

O(n2 log(n)600),

we find that this is by no means practical. The results are nevertheless interesting, as the analysis is
probably pessimistic (thus safe) and the intuition for the algorithm is valuable3.

1By randomly switching the edges in the graph, we assume an independent noise distribution over the data. But for instance,
in microarray data there is usually a systematic error. Removing and adding edges between vertices with the same probability
seems to be an oversimplification as well.

2⊕ measures the distance between two graphs, i.e. the number of edge removals and insertions required to transform the
one into the other.

3“The purpose of theory is insight, not theorems.” (Google says that this is due to Richard Hamming as paraphrased by
Steve Johnson).

3

Key ideas for the algorithm

Suppose we knowk elementsv1,v2, . . . ,vk of a clique. We call these elements acore. Given another
vertex, we want to know if it is in the same clique. If so, the vertex is neighbor ofk(1− α) core
members, if not, it is neighbor ofkα core members.α < 0.5 < 1−α, so the vertex is added to the clique
if it is a neighbor of more than half of the vertices of the current core. The failure probability declines
exponentially withk.
A rough outline of the algorithm looks like this:

• Find core.

• Test all other points if they are part of a clique.

But how do we find a core? As a brute force approach is too slow (it would have to check all subsets
of sizeO(log(n))), a more subtle solution is to try subsets of sizeO(log(n)/ log(log(n))) to classify a
sample size ofO(log(n)).

A practical heuristic

1. Copen:= the unassigned vertex of maximal average affinity

2. repeat until no change

• U := unassigned vertex of maximal affinity toCopen
if affinity > threshold, then addU to Copen

• if none, thenV := vertex inCopenof minimal average affinity
if affinity < threshold, then removeV from Copen

3. closeCopenand start at 1.

Unlike in a greedy algorithm, the removal of vertices in 2. allows the algorithm to correct “misclassifi-
cations”. A final pass as described below takes place when all clusters have been closed.

1. repeat until no change or iteration limit reached

• move each element to the cluster to which it has maximum affinity

The user is not able to (or has not to, depending on the point of view) define the expected number of
clusters directly. However, by choosing the value ofthreshold, the user defines the number of clusters
indirectly. For very high values ofthresholdeach data point will end up in its own cluster, while for very
low values all data points will form a single cluster.
If we have biological background knowledge about the data, we might initialize the algorithm with cores
based on that knowledge (similarly as we would initialize ak-means algorithm with cluster centers based
on prior knowledge). Note that the removal of vertices from cliques in the 2. step or the final pass might
destroy the initial cores!

4

