

Case study, continued
Sporulation summary
What they did
Measured mRNA expression levels of all 6200 yeast genes at 7 times
points in a (loosely synchronized) sporulating yeast culture
Plus some more standard tests and controls
What they learned
3-10X increase in number of genes implicated in various subprocesses
Several subsequently verified by direct knockouts
Where computation fits in
Automated sample handling
Image analysis
Data storage, retrieval, integration Visualization
Clustering
Sequence analysis
More on computation
Similarity search – given a loosely defined sequence "motif", e.g. a
transcription factor binding site, scan genome for matches
Which genes have MSE element?
e. g. weight matrix models, Markov models
Motif discovery – given a collection of sequences presumed to contain a
common pattern, e.g. a transcription factor binding site, find and
characterize it
What motifs are common to early-middle genes?
e. g. MEME, Gibbs sampler, footprinter,
Finding groups of sequences that plausibly contain common sequence
motifs
e. g. clustering (co-varying because co-regulated?)
Chu's "supervised" clustering
Hand picked ~40 prototype genes
Significant variation in data set
Known function
Hand segregated into 7 groups ("early",) Assigned all others to "nearest" group
Based on Pearson correlation to average of prototypes
Ordered within groups by correlating to neighboring groups
Pearson correlation

Pearson := $\frac{\left|\sum_{i=1}^{n} (x_i - x)(y_i - y)\right|}{\sigma_x \sigma_y}$ Larger \rightarrow more similar Euclidean distance Euclidean := $\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$ Smaller \rightarrow more similar Critique Informed clustering Subjective, maybe counter to data Knockout verification "Peak time" simplistic Reproducibility? Replicatability? "Normalize" data? Other analysis possible Lagged correlation Correlation other then Pearson's Other approaches to clustering Principle component axis is line with greatest variance in data Used in statistical analysis Turns out that two axis (variables) define most variation in data No clear division in data (not easily divided into 7 groups) Projection onto 3 axes gives more distinct groupings Homework Choose paper on microarrays, read it, try to think about issues (i.e. analysis, other research, etc). What surprised you about this paper? Send a paragraph of interesting observations via email by Wednesday or Thursday. Clustering Traced back to Aristotle, big push in 1950's Ways to use Cluster genes Those clustered together may be linked Cluster experiments Drug/tumor function may be separated into groups Both Exploratory technique Used to generate, rather then test, hypothesis Many methods All find clusters, some more applicable then others How to compare methods? Hierarchical clustering (Dis)similarity measure individuals and groups

Each point a gene

At every stage of algorithm, merge two most similar "pairs" Gives a tree structure

