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Talks this week

» Today - Dr. Terry Hwa, Professor of
Physics, UC San Diego "Complex
Transcriptional Logics From Simple

Molecular Interactions” 3:30, Hitchcock
132

 Fri - Me, “Improved Gene Selection for
Classification of Microarrays” 3:30 Loew
102



More Reading

- Paper on quantitative or computational
analysis of microarrays (clustering,
normalization, differential
expression,...)

» Again, send me a very short comment
on it, say by Monday



Graphs

* Vertices

» Edges
- G=(V, E)
O

- Why? Model simple pairwise relations,
e.g.

— Vertices = genes
— Edges = “similar” pairs of genes



Cliques

» K-clique is a set of k vertices, each of
which is connected (directly) to all the
others.

* Why? A “cluster” - all Z / i
“similar” to each other [



Clustering -> Finding Cliques

n

2) 4950

» 2- cliques -- just edges, easy (

» 3-cliques -- triangles (Z) 161700

n

13
10) 1.7 %10

» 10-cliques -- hmmm... (

» General -- (Z)Z(%) gets big fast...



Polynomial vs
Exponential Growth

' 2n/10

1OOQn2




Asymptotic Analysis

» How does run time grow as a function of
problem size?

n2 or 100n2+ 100 n+ 100 vs 22n

- Defn: f(n) = O(g(n)) iff there is a constant c s.t.
If(n)l = cg(n) for all sufficiently large n.
100 N2+ 100 n + 100 = O(n?) [e.g.c=101]
nz= 0(22")
22N|s O(n?)



Big-O Example

f(n) = O(g(n)) =
O(g'(n))




Utility of Asymptotics

- “All things being equal,” smaller
asymptotic growth rate is better

- All things are never equal

» Even so, big-O bounds often let you
guickly pick most promising candidates
among competing algorithms

 Poly time algorithms often practical;
non-poly algorithms seldom are.



2nd problem: Noise

» Given graph H which is a collection of

(large) cliques, corrupt each
edge/nonedge with probability o < 1/2

« Call result G

- Problem: Find (approximate) H given G
as input



Simplified problem

» Given graph H which is a collection of
(large) disjoint cliques, corrupt each
edge/nonedge with probability o < 1/2

« Call result G

- Problem: Find (approximate) H given G
as input
» SuccessifIH®GIl=sIH® G|



Notes

» Without noise, simplified problem is

very easy - any edge in clique leads to
rest

* Noise destroys that
» But - not totally



The underiaying cluster structure

FIG.3. A visual representation of the simulation process. Cluster structure is (1/4, 1/4, 1/4, 1/8, 1/16, 1/16),n = 256.
(A) The adjacency matrix of the original clique graph before the introduction of errors. Position (i, j) is black iff i and
i belong to the same cluster. (B) The same matrix after the introduction of errors. Note that the cluster structure is still
visible for all but the smallest clusters. (C) Same as B but entries are randomly permuted. This is actual input to the
algorithm. The challenge is to reconstruct B, and hence the clusters, from C. (D) Matrix C reordered according to the
solution produced by the algorithm. With the exception of perhaps the smallest clusters, the essential cluster structure is

reconsireted. Ben-Dor, et al., JCB 1999



Main Result

For all alpha < 1/2, epsilon>0, delta > 0
there is an algorithm A and constant c
(depending on alpha, epsilon and delta)
such that for all cligue graphs H with
disjoint cligues of minimum size at least
epsilon*n, A successfully recovers H’
from the alpha-corrupted version G of H
with probability > 1-delta, running in
time O(n?(log n)°)



Fine print
» For “reasonable” choices of parameters,
like epsilon = 10%, alpha = .25, the
analysis says ¢ < about 600:

n<(log n)°%

an unpleasant function whenever
logh=2 ...



More Fine Print

- Many model assumptions are very
simplistic:
— “similarity” is all-or-none
— Disjoint cliques
— Independent errors
— Adding/deleting edges equi-probable
— Known error rate



Nevertheless

* Interesting, since analysis is probably
pessimistic, and intuitions are valuable,
even if you never implement exactly this

algorithm



Key idea

- Suppose | know k elements of one clique v1,
V2, ..., Vk (a “core”)

- Given another vertex x, is it in same clique?
— If so, neighbor of k(1-alpha) core members
— If not, neighbor of k(alpha) core members

- Alpha < .5 < (1-alpha), so join if neighbor of
more than half of core. Probability of failure
declines exponentially with k.



How do you find a core?

 Brute force: try all subsets of size
O(log n)

» Too slow; more subtle - try subsets of
size O(log n / log log n) to classify a
sample of size O(log n)



Practical Heuristic

» Copen :=the unassigned vertex of max
average affinity

» Repeat until no change

— U := unassigned vertex of max affinity to
Copen; if > thresh, add

— If none, v = vertex in Copen of min avg
affinity; if < thresh, remove

* Close this cluster & restart



Final pass

» Repeat until no change (or iteration
limit):
— Move each element to the cluster to which
it has max affinity



Overall

» Simple to implement
- Reasonably fast in practice
» Gave good results in many tests
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