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Introduction

Since their invention in the mid-1990s many of im-
provements have been achieved concerning the qual-
ity of microarrays. Different kinds of microarrays are
in use today in many fields, which has led to a vast
number of preprocessing and analysis techniques for
data from such microarrays. Due to their complex-
ity and high sensitivity to all different kinds of influ-
ences during manufacturing and experiment, it is of-
ten impossible to determine the expression level of all
genes on the microarray. Genes for which no expres-
sion level could be determined will be missing values
in in the subsequent data preprocessing and analysis
steps.
The reasons why values are missing in microarray
data are diverse. It is possible to distinguish two
classes of error that lead to missing values. First, val-
ues might be missing arbitrarily, for example because
the spot intensity could not be measured or because
the background corrected spot intensity turned out to
be negative, due to a background signal higher than
the actual spot signal. Another problem encountered
particularly in cDNA microarrays are spots that have
a very low signal in both channels and thus the ra-
tio is not very robust, which leads to the values being
declared missing to prevent harmful consequences in
the data analysis. While these problems may be due
to the actual expression levels in the cell, values might
as well be missing due to the handling of the microar-
ray during the experiment. Such problems are, for
instance, dust or scratches on the surface of the array.
Figure 1 shows such a microarray.
The second class of errors that causes values to be
missing are systematical errors. Examples for system-
atical errors are problems during array production, for
instance, when the arrayer1 used a broken printing tip
to spot cDNA on the glass slide.
The consequences of any type of missing value are

1The robotic device used to manufacture cDNA microarrays.

grave, as most of the standard analysis techniques are
not prepared to handle missing values appropriately.
These range from such basic computations as simi-
larity or dissimilarity measures between two genes to
methods like principal component analysis, singular
value decomposition, clustering and classifiers such
as support vector machines. As several of these tech-
niques are commonly applied during data analysis,
the data must not contain any missing values.
There are different ways to approach the problem of
missing values in microarray data. An expensive so-
lution is to use two or more microarrays instead of
only one. The more arrays are used, the higher the
probability to find at least one value for each gene in
each condition. This approach is expensive, not per-
fect and introduces more complexity into the analysis,
in particular if results differ between replicates.
There are two inexpensive but destructive methods
that can be applied to handle missing values.Case-
wise deletionexcludes all genes that have a missing
value in one or more conditions from further steps
of the analysis. This is clearly inefficient and in the
worst case all genes are excluded. In thepairwise
deletionmethod genes are not completely removed,
but whenever a distance or another pairwise value is
computed, all missing conditions are left out in both
genes. As this is the same as defining the values in
those conditions being the equal, distances tend to be-
come smaller for genes with missing values.
Besides these destructive approaches, there are a se-
ries of constructive techniques to estimate the missing
values. The most simple one is it to fill in zeros (in the
case of log-ratios) [1] or ones (in the case of ordinary
ratios) for missing values. Alternatively, row or col-
umn averages can be used to replace missing values.
The weakness of these techniques is that they do not
take into account the correlation structure of the ex-
pression data [2]. A few methods have been proposed
that consider this information to estimate missing val-
ues. Troyanskayaet al. [2] describe a technique based
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on singular value decomposition (SVDimpute) and an
other one based on thek nearest neighbors algorithm
(KNNimpute). Comparing their methods with fill-
ing in of zeros and row averages they found that the
KNNimpute algorithm outperforms all other meth-
ods, particularly when genes are expressed in small
clusters.
Two approaches based on Bayesian inference were
published recently. The one developed by Obaet
al. [3] employs Bayesian principal component anal-
ysis (BPCA), which uses principal component re-
gression, Bayesian estimation and the expectation-
maximization (EM) algorithm to estimate the miss-
ing values. Another method was described by Zhou
et al. [4] that uses linear or non-linear regression with
Bayesian gene selection to find genes that are highly
correlated to a target gene, which in consequence are
used for missing value estimation in the target gene.
Both papers using Bayesian methods found that their
respective method works better than KNNimpute.
In this paper a method is proposed that uses hierarchi-
cal clustering to identify correlated genes.

System and Methods

Starting points

There are several possible starting points for miss-
ing value estimation in microarray data. The most
information rich is the actual image of the scanned
microarray. An extract of such an image is shown
in Figure 1. Given the image of the microarray and
information about the spots it is possible to identify
systematical errors and in some cases also the reason
why a value is missing. For instance, if there is no
signal in many or all spots in a particular region of
the microarray, it was obviously damaged or subject
to incorrect handling. In such cases it seems wise to
repeat the experiment.
The main problem with the image as a starting point is
the high complexity involved in processing the image
file, and different types of images obtained from dif-
ferent types of microarrays. A second starting point
is the output of the image analysis program. With this
data it is no longer possible to identify the reason why
a value is missing, but it is still possible to identify
systematic errors. However, different image analysis
programs will output different parameters and the out-
put for a oligo microarray will be significantly differ-
ent from the output for a cDNA array. Identification
of systematical patterns of missing values is useful
to decide whether it makes sense to estimate missing
values or if the experiment should be repeated since

Figure 1: Extract of an image from a scanned cDNA microarray.
The two bright green areas in the center of the image cover up
a part of the spots on the array, which are likely to be declared
missing. There are also traces of dust visible on the image. The
original image was taken from the Stanford Microarray Database
(http://genome-www.stanford.edu/microarray).

there is strong evidence for a defect microarray.
The expression matrix contains the least information
of all starting points mentioned, and thus the detection
of systematical errors is very limited if an expression
matrix is used as starting point. But it is the most
common format2 and applicable for all types of mi-
croarrays. Therefore it is the most favorable choice
when missing values are to be estimated in data from
different types of microarrays.

CLIMP algorithm

The CLIMP (cluster-based imputation) algorithm de-
scribed below performs missing value estimation on
an expression matrix3. Given an expression matrix
where rows represent genes and columns represent
conditions, the algorithm will estimate all missing
values in the matrix. Three requirements have to
be fulfilled by the expression matrix. First, columns
without any non-missing values are not allowed4, sec-
ond, rows with 50 % or more missing values are not
allowed and finally, there must be at least one row
without any missing value. CLIMP employs the cor-
relation structure of gene expression data to estimate
missing values.
The basic steps of the algorithm are described in the
following. Details are explained later. Figure 2 shows
a symbolic expression matrix. Each bar represents a
gene and each square in a bar represents a condition.
The white square represents a missing value that is to

2This might well change when standards like MIAME [6] be-
come better supported by analysis software.

3All other methods listed in the introduction use expression ma-
trices as well.

4The implementation requires less than 90 % missing data per
column.
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be estimated by the algorithm. For simplicity there is
only one missing value in this matrix, but the algo-
rithm is able to handle an almost arbitrary number of
missing values.

Figure 2: An expression matrix with a single missing value. Each
bar represents a gene and each column represents a condition. The
color of the bars represents a particular expression profile. There
are three different types of expression profiles in the expression ma-
trix. The different shades of red, orange and blue represent slight
variations in the expression profiles. The red and the orange ex-
pression profiles are pretty similar (hence the similar colors), but
the blue one is the inverse of the orange one (hence the comple-
mentary colors). White represents missing values.

To find genes that are similar to the gene with the
missing value, CLIMP clusters the gene expression
matrix using a complete-linkage hierarchical cluster-
ing algorithm. Complete-linkage is chosen because
the method tends to produce dense clusters. Figure 3
displays the hierarchy found by the clustering algo-
rithm and the (sorted) expression matrix.

Figure 3: Hierarchical clustering applied to the expression matrix.
It it is not clear whether there are three clusters (orange, red, blue)
or only two (orange and red, blue).

To determine the number and composition of clusters,
CLIMP extracts all clusters with a size below a thresh-
old value from the hierarchy. This is illustrated in
Figure 4. Finally, the missing value is computed as
a ranked distance weighted average of all genes in the
cluster of the gene with the missing value.

Figure 4: Clusters for an upper threshold of 5. Note that for a
threshold of 6 there would be only two clusters.

Details of the CLIMP algorithm

Often there are many distinct patterns of missing val-
ues in an expression matrix. The number of distinct
patterns is correlated with the number of missing val-
ues. Each distinct pattern is a so-calledpattern of
missingness(POM). Each POM is a set of columns.
The length of a POM is the cardinality of the set
of columns defining the POM. An expression matrix
with several different POM is shown in Figure 5.

Figure 5: An expression matrix with five distinct POM. The lengths
of the POM are 0 (POM 1), 1 (POM 3, POM 5) and 2 (POM 2,
POM 4).

Before CLIMP clusters the expression matrix, it iden-
tifies all distinct POM and the rows of the expression
matrix associated with them. The rows associated
with the POM of length 0 (which exist by definition)
are referred to as thebase matrix. The base matrix
is the maximal complete submatrix of the expression
matrix and used for estimation of missing values (in
all rows not part of the base matrix).
The clustering is performed individually for each
POM. A work matrix is created from the rows of the
base matrix and the rows associated with the POM.
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All columns defining the POM are removed from the
work matrixand the clustering algorithm is applied to
this matrix. For the expression matrix shown in Fig-
ure 5 the clustering algorithm has to be run on the four
work matrices shown in Figure 6.

Figure 6: Four different work matrices. Gray, respectively white
squares are removed before clustering. Rows with gray squares
represent the base matrix.

As mentioned above, the clusters are determined by
an upper threshold for the cluster size. But as some
genes might be outliers and thus form a cluster of size
1 and to rule out too small clusters in general, a lower
threshold is defined. If a cluster size is below this
lower threshold, estimation of missing values is based
on ak nearest neighbors approach.

Results and Discussion

The CLIMP algorithm was implemented in R and
compared to the KNNimpute5 and the BPCA6 algo-
rithm.
The test data set was based on data published by
Spellmanet al. [5]. Two of the four time-series ex-
periments performed to analyze the yeast cell cycle
were used for the comparison. The data sets differ in
the way how the yeast cells were synchronized and
are labeledα-factor andcdc15 for the correspond-
ing synchronization methods. Theα-factor expres-
sion matrix comprises 18 conditions (time points) and
thecdc15expression matrix comprises 15 conditions
(time points). Both matrices contained about 6100
yeast open reading frames.
From each of the two matrices the maximal complete
submatrix was extracted. Based on the submatrices
six matrices with different patterns of missing values
were created at levels of 1 %, 2 %, 5 % and 10 %
missing values. The values were removed using the

5The R implementation in thepamr package was used for this
comparison.

6The Java implementation available on the website of the au-
thors was used for this comparison.

rate-based method described in [3]. In consequence,
a total of 6×4= 24 matrices with missing values was
created from each of the two complete submatrices
obtained from theα-factor and thecdc15matrices.
The performance of the three methods was evalu-
ated using the normalized root mean squared error
(NRMSE) as proposed by Troyanskayaet al. and as
used in the papers by Obaet al. and Zhouet al.. The
NRMSEis defined as

NRMSE =

√
mean((O−E)2)

variance(O)
,

with O being the original matrix andE being the es-
timated matrix7. The closerNRMSEto 0 (zero), the
more accurate the estimation. IfNRMSE= 0 it fol-
lows thatO = E. The closerNRMSEto 1, the worse
the estimation.
Each of the three algorithms was run on subsets of
size 100, 500, 1000 and 2000 on each of the 24 ma-
trices for each data set. Thus it is possible to analyze
the effect of the size of the data set on the estimation
accuracy. For each percentage of missing values and
for each subset size theNRMSEwas averaged over
the six matrices8.
The parameter chosen for CLIMP were 35 as maxi-
mal cluster size and 20 as minimal cluster size. The
k chosen for KNNimpute and thek nearest neighbors
estimation in CLIMP wask = 17, as Troyanskayaet
al. had found that this is in the range of values for
k that yields best results. The distance measure used
in both KNN and CLIMP was the Euclidean distance
as proposed by Troyanskayaet al.. The BPCA algo-
rithm does not require the input of any parameters,
as the selection of all model parameters is part of the
algorithm.
The results for theα-factor data set are shown in Fig-
ure 7, the results for data setcdc15are presented in
Figure 8. The figures show that CLIMP has almost
identical performance as KNNimpute. BPCA per-
forms much better than the other two methods, which
confirms the findings of Obaet al.. The plots indicate
that missing values in larger expression matrices are
usually estimated with higher accuracy, particularly
for the BPCA algorithm. However, the more data is
missing, the less accurate the estimation.
It remains open how often CLIMP used its integrated
k nearest neighbor algorithm for estimations in these

7Here the complete matrices were used, it is also possible to
compute theNRMSEonly on the missing, respectively estimated
values.

8KNNimpute was unable to estimate missing values in three
cases where the subset size was 100.
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Figure 7: Results of BPCA, CLIMP and KNNimpute on the ma-
trices created from theα-factor data set. The results of CLIMP
and KNNimpute are almost identical. Each of the four lines in the
plots represents a subset size, circles represent 100, triangles 500,
squares 1000 and diamonds 2000 genes.

experiments. The use ofk nearest neighbor is pre-
sumably more frequent when the expression matrix
has only few genes, because the clustering algorithm
will not be able to identify dense clusters. Knowledge
about how oftenk nearest neighbors is used in CLIMP
would be helpful in determining how well CLIMP ac-
tually performs. Intuitively CLIMP should perform
better than KNN, as it allows the number of genes
used for estimations to be selected in a way more ap-
propriate to how the data is generated.
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Figure 8: Results of BPCA, CLIMP and KNNimpute on the matri-
ces created from thecdc15data set. The results of CLIMP and KN-
Nimpute are almost identical. Each of the four lines in the plots rep-
resents a subset size, circles represent 100, triangles 500, squares
1000 and diamonds 2000 genes.

However, the multiple clustering steps in CLIMP
make the algorithm quite slow. On the other hand, this
is not a problem, since time is not an important issue
in missing value estimation. This step is performed
only once during the preprocessing of the microarray
data and even if it takes a day or two, this will be lit-
tle time compared to the time spent on experimental
work in the lab and the subsequent data analysis.
A more serious shortcoming of the current implemen-
tation of CLIMP is that the algorithm always requires
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at least one row without missing values in the expres-
sion matrix. This problem may be overcome by im-
plementation of a method that creates a base matrix
from two disjunct POM that have a large number of
rows associated with them and only a small number of
missing conditions. Conditions missing in one block
of rows would be estimated using the respective other
one.
It is also questionable if the values chosen as upper
and lower bound for the cluster size are ideal. If these
parameters are tuned, the performance of CLIMP
might increase. The same holds for the ranked dis-
tance weighted average currently used to estimate
missing values, it would probably be more appropri-
ate to use weights based on the actual similarity or
distance and not on their rank.
CLIMP might gain more prediction accuracy if the
base matrix would be extended after each POM is pro-
cessed. The rows associated with the processed POM
could be added to the base matrix, which would yield
clusters with more similar expression profiles. It is
not clear whether estimated values should be used to
estimate other missing values, but even if this is not
done, more than 50 %9 of the values in each row can
be employed in estimations of missing values. Ideally,
POM are processed in order of increasing length. Al-
ternatively, it is possible to reestimate all missing val-
ues in a two-stage process. In the first stage the algo-
rithm is applied as describe before and in the second
stage the complete estimated matrix is used as base
matrix for reestimation of the missing values. This
would also have a beneficial effect on the clustering.
The accuracy of the estimations might also be in-
creased if the properties of the values used to estimate
a missing value are considered. Figure 9 illustrates
three different scenarios that might occur.
In the topmost case, the estimation will probably be
very accurate, as the values for the estimation are all
very similar. In the second case though, the values
form two clusters, one of them above, the other below
zero. The average would be a value close to zero. But
it seems not very likely that the true value was close
to zero, if we consider genes with similar expression
profiles. In that case it would make sense to identifiy
subclusters within the genes selected for the estima-
tion and use only genes from the subcluster closer to
the target gene. The third case is the worst, identifi-
cation of subclusters will not yield any benefit. Gen-
erally, the described subclustering step will require a
large base matrix to find meaningful subclusters.

9The CLIMP algorithm requires that at least 50 % of the values
in each row are non-missing.

Figure 9: Three scenarios for values used to estimate a missing val-
ues. The data shown represent one cluster obtained by hierarchical
clustering.

Conclusions

CLIMP is an algorithm with performance equal to
that of KNNimpute and there are several unimple-
mented features that might improve the estimation ac-
curacy of CLIMP. However, it seems very likely that
the algorithms based on Bayesian inference will still
be the best choice, as their accuracy is significantly
better than that of KNNimpute and CLIMP.
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