CSE 525: Randomized Algorithms and Probability

Spring 2025

HW6

Submit to gradescope

Instructions

- You should think about each problem by yourself for at least an hour before choosing to collaborate with others.
- You are allowed to collaborate with fellow students taking the class in solving the problems. But you **must** write your solution on your own.
- You are not allowed to search for answers or hints on the web. You are encouraged to contact the instructor or the TAs for a possible hint.
- You cannot collaborate on Extra credit problems
- Solutions typeset in LATEX are preferred.
- Feel free to use the Discussion Board or email the instructor or the TAs if you have any questions or would like any clarifications about the problems.
- Please upload your solutions to Gradescope.

In solving these assignments, feel free to use these approximations:

$$1 - x \approx e^{-x}, \qquad \sqrt{1 - x} \approx 1 - x/2, \qquad n! \approx (n/e)^n, \qquad \left(\frac{n}{k}\right)^k \le \left(\frac{n}{k}\right) \le \left(\frac{en}{k}\right)^k$$

1. Show that the cover time of any unweighted d-regular graph G = (V, E) is $O(n^2 \log n)$.

Hint:What is the length of the shortest path between $u, v \in V$?

2. Given a sequence $a_0, \ldots, a_{m-1} \in [d]$ and a starting vertex $v_0 \in V$ of a consistently labelled graph G = (V, E), we can traverse G by first going to the unique neighbor of v_0 , say v_1 , connected with the edge labelled a_0 , then going to the unique neighbor of v_1 , say v_2 , connected with the edge labelled a_1 , etc. We say a sequence a_0, \ldots, a_{m-1} covers G if for any starting vertex $v_0 \in V$, following this sequence we visit all vertices of G.

Given $1 \le d < n$, prove that there exists a sequence a_0, \ldots, a_{m-1} for some m = poly(n, d) such that for **any** *d*-regular consistently labelled *n* vertex graph G = (V, E) the sequence a_0, \ldots, a_{m-1} covers *G*.