CSE 525: Randomized Algorithms Spring 2025

Lecture 4: Strong Concentration Bounds
Lecturer: Shayan Oveis Gharan 04/10/2025

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

We have seen how knowledge of the variance of a random variable X can be used to control deviation of
X from its mean. This is the heart of the second moment method. But often we can control even higher
moments, and this allows us to obtain much stronger concentration properties. A prototypical example is
when X7, Xs, ..., X, is a family of independent (but not necessarily identically distributed) {0,1} random
variables and X = X7 + X5+ -+ X,,. Let p; = E[X;] and define p =E[X|=>"" ;p1+p2+ -+ pp. In
that case, we have the following multiplicative form of the ” Chernoff bound”.

Theorem 6.1 (Multiplicative Chernoff bound). . For every 6 > 0, it holds that

e’ K
P[X > (1+6)u] < ((1+5)1+5> .

and
e

P[X < (1—64] < (u_;;_éy

Consequently,
2 2
P[X > (1+40)u] <e P HCH PIX < (1—6)u] <ed 12

Proof. Let t be a parameter that we choose later.

PIX > (1+0)u] =P [etx > et<1+5>ﬂ] < Ele] (6.1)
B o Markov’s Inequality et(1+0)u
The first inequality uses that the exponential function is a monotone function.
Now, we can write
tX7 _ t> X | tX; _ tXi
E [6] =B |:6 :| =B lr[¢] indcp(;ldcncc]:[1]}3 [6] ’
Now, observe that
E[e™] =pie' + (1—p;) =1+pi(e' —1) < erileD
1+z<e®
Plugging this back we obtain
E [etx] < Hepi(e*—l) — eile'=1)
i=1
Putting back in (6.1), we obtain
ehle’=1) . o0 Iz
PIX > (1496 < — = p(e’—=1=(1+8)t) = -_
(X > (1+0)u < et(1+o)u € set t=In(148) \ (1 + 5)14—6
The other case can be proven similarly. O

6-1

6-2 Lecture 4: Strong Concentration Bounds

6.1 Giant Connected Components in Erdos-Réyni Graphs

In this section we prove the following theorem.

Theorem 6.2. Theorem 1 Let € > 0 be a small enough constant. Let G be an Erdéos-Réyni random graph
with parameter p.

1. Letp= 126. Then whp all connected components of G are of size at most E% Inn.

2. Let p= 1<, Then whp G contains a path of length at least 627”

n

We run the DFS algorithm to prove the theorem. First, let us recall this algorithm: Fix a natural order
1 <2< --- < n on the vertices of G we assume that algorithm prioritizes vertices according to this natural
order. DFS maintains three sets of vertices, letting X be the set of vertices whose exploration is complete,
i.e., explored, U be the set of unvisited vertices, and 7' = [n]\ X \ U be the set of active vertices in the stack.

The algorithm starts with X =7 = @ and U =V, and runs till TUU = @. At each round of the algorithm,
if the set T' is non-empty, the algorithm queries U for neighbors of the last vertex v that has been added to
T, scanning U according to the natural order. If v has a neighbor u € U, the algorithm deletes v from U
and inserts it into T' . If v does not have a neighbor in U, then v is popped out of T and is moved to X. If
T is empty, the algorithm chooses the first vertex of U according to the natural order, deletes it from U and
pushes it into T'. In order to complete the exploration of the graph, whenever the sets 7' and U have both
become empty (at this stage all connected components of G have been revealed), we make the algorithm
query all remaining pairs of vertices in .S, not queried before.

The following properties of DFS are immediate:

e At each round of the algorithm one vertex moves, either from U to T , or from T to X;

e At any time during the algorithm, it has been revealed already that the graph G has no edges between
the current set X and the current set of unvisited vertices U;

e The set T' always spans a path (indeed, when a vertex u is added to T , it happens because u is a
neighbor of the last vertex v in T ; thus, u augments the path spanned by T, of which v is the last
vertex).

Let N = (g) To prove the theorem we run DFS on a random input G(n,p). Thus we feed DFS algorithm
with a sequence of i.i.d. Bernoulli(p) random variables Y7,..., Yy so that is gets its i-th query answered
positively if Y; = 1 and answered negatively otherwise, the so obtained graph is clearly distributed according
to G(n, p). Thus, studying the component structure of G can be reduced to studying the properties of the
random sequence X . In particular, observe crucially that as long as U # &, every positive answer to a query
results in a vertex being moved from U to T, and thus after ¢ queries and assuming 7' # @ still, we have
IXUuT| > 22:1 Y;. (The last inequality is strict in fact as the first vertex of each connected component is
moved from T to U ”for free”, i.e., without need to get a positive answer to a query.) On the other hand,
since the addition of every vertex, but the first one in a connected component, to U is caused by a positive
answer to a query, we have at time t: |T] <1+ Y!_ Vi

The following lemma gives us the tool that we need to prove the theorem.

Lemma 6.3. Let € > 0 be a small enough constant. Consider the sequence of iid Bernoulli random variables
with parameter p. Y1,...,Yn.

1. Let p = 1;6 and k = 6%ln n. Then, with probability 2 1 — 1/+/n, there is no interval of length kn
where at least k of the Bernoullis are 1.

Lecture 4: Strong Concentration Bounds 6-3

2. Letp= 1# and Nog = % Then,

e(1 + e(l+en 2/3

<n >1—o0(1).

Proof. Consider an interval I of length kn in [N]. Let Y =5
tive Chernoff bound,

se1 Yi. Notice E[Y] = knp. By the multiplica-

P[sz]_P[Yzw}P[Yz

E[Y]
1—¢

EQE[Y] _ .7
) <n” e
24¢

} < exp(—

where the last inequality follows by k = 512 Inn. By a union bound the probability, since there are only O(n?)
many such intervals the claim follows.

To prove 2, let Y = ZNO Y;. Then,
1+ e€)en
E[Y]=Ny-p= %
Now, again by multiplicative Chernoff bound, for § = E(l _:i)s

1+e

> nwﬂ < exp(—6%u/3) < exp(—n'/?)

We are now ready to prove the theorem.

Part 1. Assume to the contrary that G contains a connected component C' with more than k = 612 Inn
vertices. Let us look at the epoch of the DFS when C' was created (an epoch is a period during which the
stack gets empty again). Consider the moment inside this epoch when the algorithm has found the (k+1)-st
vertex of C' and is about to move it to T. Denote X¢ = X N C at that moment. Then |Xc UT| = k, and
thus the algorithm got exactly k positive answers to its queries to random variables Y; during the epoch,
with each positive answer being responsible for revealing a new vertex of C', after the first vertex of C' was
put into T in the beginning of the epoch. During the epoch only pairs of edges touching X UT have been
queried, and the number of such pairs is therefore at most (’;) + k(n — k) < kn. Tt thus follows that the
sequence Y contains an interval of length at most kn with at least k 1’s which is a contradiction.

Part 2. Now assume that the sequence Y satisfies Property 2 of L(\mma 6.3. We claim that after the

first Nog = €2 queries of the DFS algorithm, the set 7" contains at least < vertices (with the contents of T'
forming a path of desired length at that moment).

First observe that |X| < % at time Np. Indeed, if | X| > %, then let us look at a moment ¢ where |X| = %
At that moment |T'| < 1—}—22.:1 Y; < % by Property 2 of the Lemma. Then |U| =n—|X|—|T| > %, and the
algorithm has examined all | X| - |U| > %2 > Ny pairs between X and U (and found them to be non-edges)
— a contradiction.

Getting back to time Np; now assume | X| < 7 and |T'] < % then, we have U # @. This means in particular
that the algorithm is still revealing connected components of GG, and each positive answer it got resulted in
moving a vertex from U to T (some of these vertices may have already moved further from 7" to X). By

6(1J2re)n o TL2/3

Property 2 of Lemma 6.3 the number of positive answers at that point is at least . Hence, we

6-4 Lecture 4: Strong Concentration Bounds

have |X UT| > <Atan _p2/8 17| < 5%", then |X| > ¢t + 3;2” — n?/3. Therefore, all pairs of vertices

between X, U are queried already (and received a negative answer), i.e., | X|- |U| many pairs. It follows that

6277,

€2n
= No 2 X[U] 2 X[(n—|X] - -

en 3e?n 9 en €n :
> (222t 2/3) _ o= 2/3
2 < 5 + 10 n) (n 5 5 +n

2 2,,2 2
en €En Een
> —o(m? >
=3 T (€)n”> =

as desired.

6.2 Congestion Minimization Problem

A classical technique in the field of approximation algorithms is to write down a linear programming re-
laxation of a combinatorial problem. The linear program (LP) is then solved in polynomial time, and one
rounds the fractional solution to an integral solution that is, hopefully, not too much worse than the optimal
solution.

A classical example goes back to Raghavan and Thompson [RT87]. Let G = (V, A) be a directed network,
and suppose that we are given a sequence of terminal pairs (s1,t1), (s2,%2), ..., (Sk, tx) where {s;}, {t;} C V.
The goal is to choose, for every i, a directed s;-t; path P; in G so as to minimize the maximum congestion
of an arc e € A:

OPT = min{r&aj(#{i:eec P}}

This problem is NP-hard. Our goal will be to design an approximation algorithm that outputs a solution
so that the congestion of every edge is at most o - OPT, for « as small as possible. The number « is called

the approximation factor of our algorithm. We will see that for this problem we will be able to achieve
a =028,

loglogn

We start by writing a linear programming relaxation for this problem. Let P; be the set of (directed) paths
from s; to t; and let P = U;P;. For every path P, we have a variable xp to denote the amount of flow that
we route along P.

min ¢
s.t Z Yyp = Vi<i<k
PeP; (62)
Z yp <t Ve € A
PcP:ecP
yp >0 vP

A few observations are in order:

e OPT(LP) < OPT. This is simply because the optimum solution is a feasible solution in the above
program. Note that the optimum solution satisfies all of the above constraints with the additional
property that yp € {0, 1} for all paths P.

e Although the above program has exponentially many variable one for every directed path connecting
s; — t; (for all 4), its optimum solution can be computed in polynomial time. To do that we need two
observations:

Lecture 4: Strong Concentration Bounds 6-5

i) We can write a linear program to find a flow of value 1 from s; to t;. We have a variable fe(i) to
denote the flow of every edge.

> =1

S;i—e

DI =T Yot st
e—v v—re

>0 Ve.

Having that, the congestion of e due to the flow routed between the i-th pair is fe(i); so the total
congestion of e is 37, f{.

ii) A (fractional) flow (of value 1) from s; to ¢; can be decomposed into a distribution of paths from
s; to t;. To see that, given the solution {fe(z)}eeA, greedily find a path P from s; to t; on edges

with positive flow; let yp be minecp fe(l). Then, subtract yp from the flow of all edges along P.
We will obtain a new flow of value 1 — yp from s; to t;. So we repeat this procedure until we get
the 0 flow.

6.3 Independent Rounding

Given a solution y to (6.2), we want to round it to an integral solution. Namely, we want to choose exactly
one path from each P; such that the union of the chosen paths have small congestion, at most «OPT.

We follow the independent rounding method. Recall that, by feasiblity of y, for every 1 < ¢ < k, we know
that) pep yp = 1. So, we can think of {yp}pep, as providing a probability distribution over s;-t; paths.
For every i, independently, we choose one of the paths P € P; with probability yp. This procedure, by
definition, gives a feasible set of directed paths from s; to ¢; for all 7. So, it remains to bound the maximum
congestion. We prove the following theorem.

Theorem 6.4. With probability at least 1—1/n the above algorithm produces a integral set of paths connecting
all terminals with maximum congest at most

1
_98" Hpr
loglogn

Let Yp be the indicator random variable that P is chosen. For an edge e, let X. be the random variable
that is the congestion of edge e. So,
Xe= Y Yp

PcP:ecP

By linearity of expectations,

E[X.]= Y yr<OPT(LP).
PeP:ecP

So, the expectations are small. We just need to use a Chernoff bound/union bound argument. Unfortunately,
the random variables Yp are not independent. So, we need to use a slightly different random variables that
are truly independent.

The idea is to note that we always have exactly one path from s; to ¢;. So, let Y, ; be the indicator
random variable that the unique path from s; to ¢; uses edge e. So, X, = Zz Y. ;. It follows that Y. ;’s

6-6 Lecture 4: Strong Concentration Bounds

are independent. Let 8 = (1 + 6)%, and note that 8 > 1 since OPT > OPT(LP). So, by Chernoff
bound,

B\ OPT(LP) R OPT R
P[Xe Z (1 + (S)OPT] = P[Xe Z 5 . OPT(LP)] S (IBIB> S (W) S (W)

where in the last inequality we simply use that OPT > 1. Now, to get the strong concentration bound we
need to choose ¢ large enough such that the RHS is at most n~3. It turns out that for that purpose it is

enough to let 1+ 6 = C’lolgf’lgo gn for a large enough constant C' > 1.

Since, G has at most n? edges, |A| < n?, by union bound

P[3e: X, > (1+86)OPT)<n? n %<

S|

So, the algorithm succeeds with probability at least 1 — 1/n.

6.4 Future Works and Open Problems

Chuzhoy, Guruswami, Khanna and Talwar showed that min-congestion problem is NP-hard to approximate
within any factor better than log’ﬁ) Zn when the underlying graph is directed. Note that the same algorithm
that we discussed here works if the underlying graph is undirected (we can just put two copies of every edge
one in every direction). However, for undirected, the result of Raghavan-Thompson is still the best known
approximation factor. The best hardness result is loglogn by Andrews-Zhang. It is a fundamental open

problem in the field of network routing to beat the Raghavan-Thompson’s classical algorithm.

https://homes.cs.washington.edu/~jrl/teaching/cse525sp19/notes/stoc07_diredpwc.pdf

	Giant Connected Components in Erdös-Réyni Graphs
	Congestion Minimization Problem
	Independent Rounding
	Future Works and Open Problems

