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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

18.1 Max Eigenvalue of Random Matrices

We will now use generic chaining to show that the largest eigenvalue of a random symmetric n × n matrix
with Rademacher entries is O(

√
n). This is certainly not the simplest way of proving such a result, but it

will give a sense of how these techniques can be applied.

Our “sub-Gaussian” random process is to pick Rademacher random variables ri,j , for each 1 ≤ i < j ≤ n,
define the matrix Mi,j = Mj,i = ri,j and let

F (x) = xTMx

for every x ∈ T . (we assume the diagonal is 0 for simplicity. It thus follows that

xTMx = 2
∑

1≤i<j≤n

xixjri,j = 〈r, z〉

So, we let T be the set of vectors

T = {z ∈ R(n
2)−n : ∀i, j : z{i,j} = 2xi, xj , ‖x‖ = 1}

Let g be a Radamacher random variable By Hoeffding’s inequality for any vector v we can write

P [〈g, v〉 ≥ `] ≤ exp

(
− `2∑

i 4v2i

)
= exp(− `2

‖v‖2
),

so, this distribution is 1/4-subgaussian.

It follows that for x, y ∈ Rn with ‖x‖ = ‖y‖ = 1

1

4
‖zx − zy‖2 ≤ ‖xxT − yyT ‖2F = ‖(x− y)xT − y(x− y)T ‖2F

≤ ‖(x− y)xT ‖2F + ‖y(x− y)T ‖2F
= ‖x− y‖2‖x‖2 + ‖x− y‖2‖y‖2

≤ 2‖x− y‖2.

Having this we can write

d(zx, zy)2 = E
[
〈g, zx − zy〉2

]
= ‖zx − zy‖2 ≤ 8‖x− y‖2.

Now we need to apply generic chaining to F . We can conclude that an ε-net over the unit Euclidean sphere
is also a

√
8 · ε-net for the metric space (T, d). For the unit Euclidean sphere there is an ε-net of size at most
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(3/ε)n. To apply generic chaining, let Tk be an arbitrary subset of T of cardinality 22
k

if 2k < n, and an

ε-net with ε = 3 · 2−2k/n otherwise. Applying the generic chaining inequality,

E
[
sup
z∈T

F (z)

]
≤ O(1) ·

∑
k

2k/2 ·
√

8 ·min
{

2, 3 · 2−2
k/n
}

= O(
√
n)

Consider a weighted hypergraph H = (V,E,w) where we : e ∈ E are nonnegative edge weights. We
associated to H the quadratic expression

QH(x) =
∑
e∈E

we max
u,v∈e

(xu − xv)2.

The main observation is that If H were a graph i.e., for every edge e we had |e| = 2 for, this would correspond
to the quadratic form of the graph Laplacian.

As our main application of chaining we will explain algorithms to sparsify hypergraphs: That is we want to
construct another hypergraph H̃ = (V, Ẽ, w̃) such that Ẽ ⊆ E and such that

|QH(x)−QH̃(x)| ≤ ε ·QH(x), ∀x ∈ Rn (18.1)

where as usual ε > 0 is the accuracy parameter of our sparsifier. Furthermore, similar to the graph case we
would like to make |Ẽ| as small as possible, ideally near-linear in |V | (while —E— could be as large as 2|V |

in this case).

The following theorem is proved in a paper by James Lee

Theorem 18.1. For any n-vertex weighted hypergraph H = (V,E,w) and ε > 0, there is a spectral ε-
sparsifier H̃ = (V, Ẽ, w̃) for H such that

|Ẽ| ≤ O(
logD

ε2
n log n),

where D := maxe∈D |e|.

18.2 Independent random sampling

For any edge e let Qe defined as

Qe(x) = we max
u,v∈E

(xu − xv)2.

Therefore, QH(x) =
∑
eQe(x).

Suppose we have a probability distribution pe : e ∈ E, i.e., pe ≥ 0 and
∑
e pe = 1. Similar to the graphic

case, we let X be an unbiased estimator: Namely we let X = we

pe
Qe with probability pe. Then, it follows

that

E [X] =
∑
e

pe ·
we
pe
Qe = QH

As usual the difficulty would be in choosing the probabilities pe.

Then, we form H̃ by sampling X, m many times and taking the empricial mean of the samples. In particular,
we can write,
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QH̃(x) =
1

m

m∑
k=1

wek
pek

Qek(x),

Observe that
E [QH̃(x)] = QH(x)

for all x ∈ Rn. So, as before the main question is how to choose the probabilities pe?

18.3 Auxilury Graph

Define the edge set

F :=
⋃
e∈E

(
e

2

)
,

and let G = (V, F, c) be a weighted graph, where we will choose the edge conductances c ∈ R+
F later. Let

LG :=
∑

{u,v}∈F

cuv(bu,v)(bu,v)
T ,

Let R(u, v) denote the effective resistance between u, v in G. For a hyperedge e ∈ H, we let

Rmax(e) := max {Ru,v : {u, v} ∈ e} ,

Having this we define

pe :=
weRmax(e)

Z
, for e ∈ E.

where Z :=
∑
e∈E weRmax(e) is the normalizing constant. Note that in the special case that H is a graph

Rmax(e) = R(e). Now, the question is how to choose the conductances of the edges of G?

The following is the main lemma:

Lemma 18.2. Suppose it holds that

‖x‖2 ≤ QH(L
−1/2
G x),∀x ∈ Rn, (18.2)

then for any 1 > ε > 0 and m ≤ O( logD
ε2 Z log n), with a constant probability H̃ is a sparsifier of H.

The proof of this lemma uses the chaining machinery. But, let us first discuss how to satisfy assumptions of
this lemma?

Roughly speaking this auxiluary graph G, puts QH into isotropic position. Of course, this step is very
straightforward for matrices but as you will see this is fairly more complicated for these non-linear operators.

18.4 Choosing Conductances

We are therefore left to find edge conductances in the graph G = (V, F, c) so that (18.2) holds and Z is small.
To this end, let us choose nonnegative numbers

{ceuv ≥ 0 : {u, v} ∈
(
e
2

)
, e ∈ E}
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such that ∑
{i,j}∈

(
e
2

) ceuv = we, ∀e ∈ E. (3.11)

For {u, v} ∈ F , we then define our edge conductance

cuv :=
∑

e∈E:{u,v}∈
(
e
2

) ceuv. (18.3)

In this case,

‖L1/2
G y‖2 = 〈y, LGy〉 =

∑
{i,j}∈F

cuv(yu − yv)2 =
∑
e∈E

∑
{u,v}∈

(
e
2

) ceuv(yu − yv)2
≤
∑
e∈E

∑
{u,v}∈

(
e
2

) ceuv max
{u,v}∈

(
e
2

)(yu − yv)2
=
∑
e∈E

we max
{i,j}∈

(
e
2

)(yu − yv)2 = QH(y).

Taking y = L
+1/2
G x gives

‖x‖2 ≤ QH(L
+1/2
G x),

verifying (18.2).

Lemma 18.3 (Foster’s Network Theorem). It holds that∑
{u,v}∈F

cuvR(u, v) = n− 1.

Proof. The observation is that∑
u,v

cuvR(u, v) =
∑
u,v

cuv Tr(bTu,vL
−1
G bu,v) =

∑
u,v

cuv Tr(bu,vb
T
u,vL

−1
G ) = Tr(L−1G LG) = n− 1.

Now, define

K := max
e∈E

max
u,v∈(e

2)

Rmax(e)

R(u, v)
I
[
ceu,v > 0

]
.

Then, Z =
∑
e∈E weRmax(e) ≤ K(n− 1).

Lemma 18.4. We can choose conductances ceu,v such that (18.3) is satisfied and K = 1.

Proof. The conductances can be computed by solving the following convex program:

max log det(LG(cu,v) + J)

s.t.,
∑

u,v∈(e
2)

ceu,v = we

ceu,v ≥ 0.

(18.4)
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Note that this program is convex as log of the determinant is a concave function. Equivalently, the objective
can be written as log of the generating polynomial of all spanning trees of G: log

∑
T

∏
{u,v}∈T cu,v. The

convexity follows by the fact that any real stable polynomials is log-concave.

We don’t go into the details here. The proof uses writes the ”KKT” condition for the optimality of the
convex program and deduces the bound on K from that. We remark that

18.5 Notes on Proof of Lemma 18.2

The proof of Lemma 18.2 is technical but at high-level it uses the generic chaining machinery. The set

T = {x : QH(L
−1/2
G x) ≤ 1} and the proof uses (18.2) which says that T is a subset of the unit ball.

We just explain the first few steps: We let Ĥ be an independent copy of H̃,

EH̃ max
QH(y)≤1

|QH(y)−QH̃(y)| = EH̃ max
QH(y)≤1

|EĤ [QĤ(y)]−QH̃(y)|

= EH̃ max
QH(y)≤1

|EĤ [QĤ(y)−QH̃(y)]|

≤ EĤ,H̃ max
QH(y)≤1

|QĤ(y)−QH̃(y)|,

where we have used that |EX| ≤ E|X| and max(EX1, . . . ,EXk) ≤ Emax(X1, . . . , Xk).

The point of this first few steps is to make the process ”centered”. The second step is to avoid binary 0/1
random variables. Such random variables are very annoying to run a chaining argument for.

The idea is that the distribution of Qêk(y) − Qẽk(y) is symmetric around the origin, i.e., centered. So,
Qêk(y)−Qẽk(y) and −(Qêk(y)−Qẽk(y)) have the same distribution.

EĤ,H̃ max
QH(y)≤1

|QĤ(y)−QH̃(y)| ≤ Es∈{−1,+1}mEĤ,H̃ max
QH(y)≤1

∣∣∣∣∣ 1

m

m∑
k=1

si

(
wêi
pei

Qêi(y)− wẽi
pẽi

Qẽi(y)

)∣∣∣∣∣
≤ 2Es∈{−1,+1}mEĤ max

QH(y)≤1

∣∣∣∣∣ 1

m

m∑
k=1

si
wêi
pei

Qêi(y)

∣∣∣∣∣
First, notice

we
pe
Qe(L

−1/2
G x) =

we
pe

max
u,v∈(e

2)
〈L−1/2G x, bu,v〉2 = max

u,v∈(e
2)
〈x, zeu,v〉2

where zu,v = L
−1/2
G bu,v and zeu,v =

√
we/pezu,v. If we let

Nk(x) = max
u,v∈ek

|〈x, zeku,v〉|

Then,

QH̃(L
−1/2
G x) =

1

m

k∑
i=1

Ni(x)2.

Similarly, the object we need to study is

1

m

k∑
i=1

siNi(x)2
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for Radamacher random variables {si}1≤i≤m. So, we just need to the expected value of this quantity over

the space T = {x : QH(L
−1/2
G x) ≤ 1}. This is where the chaining is used. But the details is beyond the

scope of this course.
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