
CSE 525: Randomized Algorithms Spring 2025

Lecture 17: Generic Chaining
Lecturer: Shayan Oveis Gharan 06/02/25

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

17.1 A Concrete Setting

Suppose that we have a subset T ⊆ Rn, we pick a random Gaussian vector g from N(0, I), and we are
interested in the random variable

sup
t∈T

⟨g, t⟩ (17.1)

In theoretical computer science, for example, a random variable like (17.1) comes up often in the study of
rounding algorithms for semidefinite programming, but this is a problem of much broader interest.

We will be interested both in bounds on the expectations of (17.1) and on its tail, but in this lecture we will
mostly reason about its expectation.

The first observation is that by rotational invariance property of Gaussians ⟨g, t⟩ is distribution as a (centered)
normal N (0, ∥t∥2)-random variable. So,

P [⟨g, t⟩ > ℓ] ≤ e−ℓ2/(2∥t∥2)

So, if T is finite, by a simple union bound we can write

Pr

[
sup
t∈T

⟨g, t⟩ > ℓ

]
≤ |T | · e−ℓ2/(2 supt∈T ∥t∥2)

It thus follows that

Eg∼N(0,I)

[
sup
t∈T

⟨g, t⟩
]
≤ O

(√
log |T | · sup

t∈T
∥t∥

)
(17.2)

The above bound can be tight, but it is poor if the points of T are densely clustered, and it is useless if T is
infinite.

It is useful to note that, if we fix, arbitrarily, an element t0 ∈ T , then we have

Eg∼N(0,I)

[
sup
t∈T

⟨g, t⟩
]
= Eg∼N(0,I)

[
sup
t∈T

⟨g, t− t0⟩
]

(17.3)

because E⟨g, t0⟩ = 0, as g is a mean zero random variable. The latter expression is nicer to work with
because it makes it more explicit that what we are trying to compute is invariant under shifts of T , and only
depends on pairwise distances of the elements of T , rather than their norm!

In the cases in which (17.2) gives a poor bound, a natural approach is to reason about an ϵ-net T ′ of T , that
is, a subset T ′ ⊆ T such that for every t ∈ T there is an element π(t) ∈ T ′ such that ∥t − π(t)∥ ≤ ϵ. Then
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we can say that

E
[
sup
t∈T

⟨t− t0, g⟩
]
= E

[
sup
t∈T

⟨t− π(t), g⟩+ ⟨π(t)− t0, g⟩
]

≤ E
[
sup
t∈T

⟨t− π(t), g⟩
]
+ E

[
sup
t∈T

⟨π(t)− t0, g⟩
]

≤ O(
√

log |T |) · sup
t∈T

∥t− π(t)∥+ E
[
sup
t′∈T ′

⟨t′ − t0, g⟩
]

≤ O(
√

log |T |) · ϵ+
√

log |T ′| · sup
t′∈T ′

∥t′ − t0∥. (17.4)

This potentially give a much tighter bound than (17.2). Now, similarly to bound E supt′∈T ′⟨t′ − t0, g⟩ it
might be better to find an ϵ′-net T ′′ of T ′ and so on.

17.2 Generic Chaining

This kind of idea can be applied recursively: we construct a sequence of sets

T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ T

where T0 = {t0}. We will also assume that for some large enough n, we have Tn = T . For every i ≥ 0, let
πi : T → Ti denote a “closest point map” which sends t ∈ T to the closest point in Ti.

We simplify notation and for t ∈ T we write Xt to denote ⟨g, t⟩. The main point of ”chaining” is that we
can now write, for any t ∈ T ,

Xt −Xt0 =
∑
i≥1

Xπi(t) −Xπi−1(t).

Having this we can rewrite (17.1) as

Lemma 17.1. For every s, t ∈ T and λ > 0,

P [Xs −Xt > λ] ≤ 2 exp

(
− λ2

2 d(s, t)2

)
,

where d(s, t) = ∥s− t∥.

Instead of insisting that Ti has a certain level of accuracy, we’ll insist that Ti is at most a certain size. Now,
the question is should we require |Ti| ≤ i or |Ti| ≤ 2i, or use some other function? To figure out the right
bound, we look at (17.4). If we want the facts

√
log |Ti| telescope, we need that |Ti| > |Ti−1|2. Or to put

differently, |Ti| ≤ 22
i

.

This leads us to the generic chaining bound, due to Fernique (though the formulation we state here is from
Talagrand).

Theorem 17.2. Let {Xt}t∈T be a Gaussian process (as defined above), and let T0 ⊆ T1 ⊆ · · · ⊆ T be a

sequence of subsets such that |T0| = 1 and |Ti| ≤ 22
i

for i ≥ 1. Then,

E sup
t∈T

Xt ≤ O(1) sup
t∈T

∑
i≥0

2i/2d(t, Ti).
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Proof. By Lemma 17.1 we have for any i ≥ 1, t ∈ T and ℓ > 0,

P
[
|Xπi(t) −Xπi−1(t)| > ℓ · 2i/2d(πi(t), πi−1(t))

]
≤ exp

(
−ℓ2

2
2i
)
.

Now, the number of pairs (πi(t), πi−1(t)) can be bounded by |Ti| · |Ti−1| ≤ 22
i+1

, so we have

P
[
∃t : Xπi(t) −Xπi−1(t) > ℓ · 2i/2d(πi(t), πi−1(t))

]
≤ 22

i+1

exp

(
−ℓ2

2
2i
)
. (17.5)

Let us now define the event

Eℓ =
{
∀i ≥ 1, t ∈ T : Xπi(t) −Xπi−1(t) ≤ ℓ · 2i/2d(πi(t), πi−1(t))

}
,

then, for ℓ ≥ 4, summing (17.5) yields,

P
[
Eℓ
]
≤

∑
i≥1

22
i+1

exp

(
−ℓ2

2
2i
)

≤
∑
i

e−ℓ2·2i−1·0.72i+1

= O(1)e−ℓ2 (17.6)

Now, we write,

S = sup
t∈T

∑
i≥1

2i/2d(πi(t), πi−1(t)).

Note that if Eℓ occurs, then supt∈T (Xt −Xt0) ≤ ℓS. Thus (17.6) implies that for ℓ ≥ 4,

P
[
sup
t∈T

Xt −Xt0 > ℓS

]
≤ O(1) e−ℓ2 ,

which implies that

E
[
sup
t∈T

Xt

]
≤ O(S) ≤ O(1) sup

t∈T

∑
i≥1

2i/2d(πi(t), πi−1(t)).

Finally, by the triangle inequality,

d(πi(t), πi−1(t)) ≤ d(t, Ti) + d(t, Ti−1) ≤ 2 d(t, Ti−1).

17.3 Optimality

Theorem 17.2 gives us a fairly natural way to upper bound the expected supremum using a hierarchical
clustering of T . Rather amazingly, this upper bound is tight. Talagrand’s majorizing measure theorem
states that if we take the best choice of {Ti} in Theorem 17.2, then the upper bound in Theorem 17.2 is
within a constant factor of E supt∈T Xt

Talagrand’s theory allows one to capture the minimum possible such bound over all possible such sequences
of nested sets. Specifically, Talagrand introduces the so-called γ2 functional, defined as:

γ2(T, d) = inf sup
t∈T

∞∑
i=0

2i/2d(t, Ti)
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where the infimum is taken over all sequences of sets T0 ⊆ T1 ⊆ · · · ⊆ T such that |Ti| ≤ 22
i

.

Then Talagrand proves the deep and beautiful theorem:

Theorem (Talagrand’s Majorizing Measure Theorem). Let T be a set equipped with a metric d that
is the metric induced by the standard Gaussian process (i.e., d(s, t)2 = E[(⟨g, s⟩−⟨g, t⟩)2] = ∥s− t∥2). Then:

Eg∼N(0,I)

[
sup
t∈T

⟨g, t⟩
]
= Θ(γ2(T, d))

17.4 Subgaussian Processes

Suppose we have a set of random variables {Xt : t ∈ T}; for simplicity we assume these random variables
are centered, i.e., E [X]t = 0. We call such an object a random process. This random process is called
sub-gaussian if there is some constant c > 0 such that

P [Xs −Xt > λ] ≤ exp(−cλ2/d(s, t)2)

In particular, Gaussian processes are sub-gaussian with c = 1/2. In the above,

d(s, t) =
√
E [(]Xs −Xt)2.

If X is a Gaussian process then

d(s, t)2 = E
[
⟨(g, s⟩ − ⟨g, t⟩)2

]
= E

[
⟨g, s− t⟩2

]
= ∥s− t∥2.

It turns out that the same chaining argument applies to any sub-guassian process. Basically the constant c
appears in the RHS of Theorem 17.2.

Another example is a Bernoulli process, i.e. a family of random variables defined thusly: For some subset
T ⊆ Rn,

{ϵ1t1 + ϵ2t2 + · · ·+ ϵntn : t = (t1, . . . , tn) ∈ T},
where ϵ1, . . . , ϵn ∈ {−1,+1} are i.i.d. uniformly random signs.

17.5 Hypergraph Sparsification

Consider a weighted hypergraph H = (V,E,w) where we : e ∈ E are nonnegative edge weights. We
associated to H the quadratic expression

QH(x) =
∑
e∈E

we max
u,v∈e

(xu − xv)
2.

The main observation is that If H were a graph i.e., for every edge e we had |e| = 2 for, this would correspond
to the quadratic form of the graph Laplacian.

As our main application of chaining we will explain algorithms to sparsify hypergraphs: That is we want to
construct another hypergraph H̃ = (V, Ẽ, w̃) such that Ẽ ⊆ E and such that

|QH(x)−QH̃(x)| ≤ ϵ ·QH(x), ∀x ∈ Rn

where as usual ϵ > 0 is the accuracy parameter of our sparsifier. Furthermore, similar to the graph case we
would like to make |Ẽ| as small as possible, ideally near-linear in |V | (while —E— could be as large as 2|V |

in this case).
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