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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

For two symmetric matrix A,B ∈ Rn×n we write

A ⪯ B

iff B −A ⪰ 0, i.e., B −A is a PSD matrix. In other words, A ⪯ B iff for any vector x ∈ Rn,

xTAx ≤ xTBx

Let λ1 ≤ · · · ≤ λn be the eigenvalues of A and λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of B. It follows that if
A ⪯ B, then for all i, λi ≤ λ̃i.

Definition 14.1. Given a graph G = (V,E) and ϵ > 0, we say a (weighted) graph H = (V,E′) is a
1± ϵ-spectral sparisifier of G if

(1− ϵ)LG ⪯ LH ⪯ (1 + ϵ)LG.

Ideally, we want H to be a subgraph of G which has much fewer edges than G. An immediate consequence
of the above definition is that all eigenvalues of H approximate eigenvalues of H up to multiplicative 1± ϵ
error.

It is also not hard to see that if H is a 1± ϵ-spectral sparisifer of G then it preserves the size of all cuts of G.
In particular, for a set S ⊆ V , recall 1S is the indicator vector of the set S. It follows that for a graph G,

1SLG1
S =

∑
i∼j

(1S
i − 1S

j )
2 =

∑
i∼j

I [|{i, j} ∩ S| = 1] = 2|E(S, S)|

So, if H is a 1± ϵ-spectral sparsifier of G we have

(1− ϵ)1SLG1
S ≤ 1SLH1S ≤ (1 + ϵ)1SLG1

S ,

so the (weighted) size of every cut in H is within 1± ϵ multiplicative factor of the same cut in G.

Theorem 14.2 (Speilman-Srivastava). For every graph G = (V,E) and ϵ > 0, there is a weighted graph H
that is a subgraph of G such that H is a 1± ϵ-spectral sparsifier of G and that H has at most O(n log n/ϵ2)
many edges.

The first idea that come to mind is to construct an unbiased estimator: Let X be a random matrix defined
as follows: For every edge e ∈ E, X = Le/pe with probability pe, Then, observe that

E [X] =
∑
e

pe
Le

pe
=
∑
e

Le = LG.

So, X is an unbiased estimator. And, the main question is how to choose the probabilities such that
concentration bounds can kick in and imply X ≈ E [X].

Let us start with a simple case of a complete graph. If G is a complete graph, we can simply let pe = 1/
(
n
2

)
for all edges. It then follows that O(n log n/ϵ2) many samples are enough to approximate the complete
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Figure 14.1: Barbell Graph

graph. However, it turns out that a uniform distribution does not necessarily work out in a general graph.
For example, if G is a Barbell graph, i.e., union of two Kn connected by an edge (see Figure 14.1), then, if
we want to down-size G to O(n log n) edges we need to let pe = O(log n)/n for all edges, but then the single
edge connecting the two complete graphs won’t be chosen with high probability. So, H is disconnected with
high probability and it cannot be a spectral sparsifier of G for any ϵ < 1. In the rest of this section we will
see how to choose the edge probabilities pe.

14.0.1 Reduction to Isotropic Case

First, it turns out that we can reduce the graph sparsification problem to a linear algebraic problem. First, let
us recall the generalized eigenvalue problem. In the generalized eigenvalue problem we are given a symmetric
matrix A and a PSD matrix B and we want to find

max
x

xTAx

xTBx

In the special case that B is the identity matrix, the solution of the above problem is exactly the largest
eigenvector of A. We can solve the above problem by reducing it to an eigenvalue problem.

max
x

xTAx

xTBx
= max

x

xTB1/2B−1/2AB−1/2B1/2x

xTB1/2B1/2x
= max

x:y=B1/2x

yTB−1/2AB−1/2y

yT y
= max

y

yTB−1/2AB−1/2y

yT y

So, to find the solution to the generalized eigenvalue problem it is enough to find the largest eigenvector y
of the matrix B−1/2AB−1/2 and then let x = B−1/2y. Note that, here we are using the fact that B is PSD;
otherwise B−1/2 is not well defined.

Now, let us go back to the spectral sparsifier problem. Suppose H is a 1 ± ϵ-spectral sparsifier of G. It
follows that for all x ∈ Rn.

1− ϵ ≤ xTLHx

xTLGx
≤ 1 + ϵ

By a similar analogy, it follows that for all y,

1− ϵ ≤
yTL

−1/2
G LHL

−1/2
G y

yT y
≤ 1 + ϵ

So, the above inequality implies that the matrix L
−1/2
G LHL

−1/2
G is approximately equal to the identity matrix.

Remark 14.3. There is a technical problem here: since LG has a zero eigenvalue the inverse of LG is
not well-defined. In the above calculation, we take the inverse with respect to positive eigenvalues of G;

in particular if LG =
∑

i λiviv
T
i , we let L

−1/2
G =

∑
i:λi>0

1√
λi
viv

T
i . We ignore this fact in the rest of our

calculations for the simplicity of the argument.
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Now, we reformulate the spectral sparsification problem as follows:

Theorem 14.4. Given n× n PSD matrices, E1, . . . , Em such that

m∑
i=1

Ei = I,

For any ϵ > 0, there is a subset S of them of size O(n log n/ϵ2) and a set of weights wi for each i ∈ S such
that

(1− ϵ)I ⪯
∑
i∈S

wiEi ⪯ (1 + ϵ)I

Let us discuss how we can reduce the sparsification problem to the above theorem. Say our graph G has m
edges. For edge ei define

Ei = L
−1/2
G LeiL

−1/2
G .

First, observe that each Ei is a PSD matrix, and furthermore,

m∑
i=1

Ei =

m∑
i=1

L
−1/2
G LeiL

−1/2
G = L

−1/2
G

(
m∑
i=1

Lei

)
L
−1/2
G = L

−1/2
G LGL

−1/2
G = I.

So, roughly speaking by multiplying the Laplacians of the edges of G by L
−1/2
G on both sides we are normal-

izing the space such that every direction look the same. We are reducing the graph spectral sparsification
problem to a linear algebraic problem of finding a sparsifier of the sum of PSD matrices that add up to the
identity matrix.

14.0.2 Finding the Spectral Sparsifier

Now, as before, let

X =
Ei

pi

with probability pi. Similar to before, E [X] = I; also X is a distribution over PSD matrices. To prove the
concentration we used the matrix Chernoff bound we proved in the previous lecture:

Theorem 14.5. Let X be a random n × n PSD matrix. Suppose that ∥X∥ ≤ α with probability 1 and
E [S] = I. Let X1, . . . , Xk be independent copies of X, then for any ϵ > 0,

P
[
(1− ϵ)I ⪯ 1

k
(X1 + · · ·+Xk) ⪯ (1 + ϵ)I

]
≥ 1− 2ne−ϵ2k/4α.

So, this says that to prove Theorem 14.4 it is enough to choose k = O(α log n/ϵ2) many copies of X. To
finish the proof all we need to choose are the probabilities pi. Here comes the important choice; we need to
choose pi’s such that α ≤ O(n).

First, suppose we let pi be uniform, i.e., pi = 1/m for all i. Then, we need to choose α such that for all i,

Ei

1/m
⪯ αI.

But it turns out that in the worst case we have to let α = m.
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The idea is to let pi ∝ Tr(Ei). Let us first find the normalizing constant: Suppose pi = β Tr(Ei). Then,

∑
i

pi = β
∑
i

Tr(Ei) = β Tr

(∑
i

Ei

)
= β Tr(I) = βn

So, we should let β = 1/n. It follows that pi = β Tr(Ei) = Tr(Ei)/n.

Now, we claim that for all i,
Ei

Tr(Ei)/n
⪯ αI

for α = n. This will complete the proof of Theorem 14.4. To show the above it is enough to show with
probability 1,

Ei

Tr(Ei)
⪯ I ⇔ λmax(

Ei

Tr(Ei)
) ≤ 1.

But this is true for any PSD matrix simply because Tr(Ei) ≥ λmax(Ei).

14.1 Back to Spectral Sparsifiation

In the previous section we saw that we should choose each Ei with probability Tr(Ei)/n. Translating this

back to the setting of graph sparsification; recall that for edge ei, Ei = L
−1/2
G LeiL

−1/2
G . So, we should sample

every edge e of G with probability

pe =
Tr(L

−1/2
G LeL

−1/2
G )

n

The quantity

Tr(L
−1/2
G LeL

−1/2
G ) = bTe L

−1
G be

is exactly the effective resistance of the edge e.

The following simple algorithm can be used to construct a 1± ϵ-spectral sparsifier of G:

1. For i = 1 to O(n log n/ϵ2)

2. Sample each edge e of G with probability pe = Tr(L
−1/2
G LeL

−1/2
G )/n. If the edge e is sampled weight

it by 1/pe.
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