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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

14.1 Properties of Effective Resistance

We continue our discussion of effective by giving an overview of basic properties of effective resistances.

Lemma 14.1 (Metric Property). For any triple of vertices s, t, u,

Reff(s, t) + Reff(t, u) ≥ Reff(s, u).

Proof. By (??),

Reff(s, u) = b⊺s,uL
†
Gbs,u

= (bs,t + bt,u)
⊺L†

G(bs,t + bt,u)

= b⊺s,tL
†
Gbs,t + b⊺t,uL

†
Gbt,u + 2b⊺s,tL

†
Gbt,u

= Reff(s, t) + Reff(t, u) + 2b⊺s,tL
†
Gbt,u.

So, we just need to show that the last term in the RHS is non-positive. The last term is equal to p(t)− p(u)
when we send one unit of flow from s to t. But, this means that t has the lowest potential in the network,
so p(u) ≥ p(t) as required.

Lemma 14.2 (Rayleigh Monotonicity Property). For a weight function w : E → R+ let Reffw(., .) be the
effective resistance function when the conductance of each edge e ∈ E is w(e). For any w,w′ such that
w ≤ w′ and any s, t ∈ V ,

Reffw(s, t) ≥ Reffw′(s, t).

Proof. Let x be the one unit electrical flow from s to t with respect to w. Since w ≤ w′,

Reffw(s, t) =
∑
e∈E

x(e)2

w(e)
≥

∑
e∈E

x(e)2

w′(e)
.

Since x is a feasible flow that sends one unit of flow from s to t, by Thompson’s law, the RHS is at least the
energy of the electrical flow that sends one unit from s to t w.r.t. w′.

Lemma 14.3 (Convexity). The effective resistance is convex w.r.t. the conductances and is concave w.r.t.
resistances. In particular, for any s, t,

1

2
(Reff1/w1

(s, t) + Reff1/w2
(s, t)) ≤ Reff2/(w1+w2)(s, t). (14.1)

1

2
(Reffw1

(s, t) + Reffw2
(s, t)) ≥ Reff(w1+w2)/2(s, t), (14.2)

14-1



14-2 Lecture 14: Hitting Time and Cover Time

14.1.1 Bounding the Effective Resistance

?? gives a simple method to upper bound the effective resistance of a pair of vertices: All we need to do is
to find a flow from s to t of small ℓ22 energy. Conversely, the following lemma gives a lower-bound on the
effective resistance of a pair of vertices.

Lemma 14.4 (Nash Williams Inequality). Let S1, S2, . . . , Sk ⊆ V such that for all 1 ≤ i ≤ k, s ∈ Si, t /∈ Si.
If for all 1 ≤ i < j ≤ k, E(Si, Si) ∩ E(Sj , Sj) = ∅, then

Reff(s, t) ≥
k∑

i=1

1∑
e∈E(Si,Si)

w(e)
.

Proof. Suppose x sends one unit of flow from s to t. We lower bound E(x) with the expression in the RHS.
Since the cuts corresponding to S1, . . . , Sk are disjoint, we can write

E(x) ≥
k∑

i=1

∑
e∈E(Si,Si)

x2(e)

w(e)
.

Therefore, it is enough to show that for each 1 ≤ i ≤ k,∑
e∈E(Si,Si)

x(e)2

w(e)
≥ 1∑

e∈E(Si,Si)
w(e)

. (14.3)

Since (Si, Si) separates s, t,
∑

e∈E(Si,Si)
|x(e)| ≥ 1. Therefore, by Cauchy-Schwarz inequality,

1 ≤

 ∑
e∈E(Si,Si)

|x(e)|√
w(e)

·
√
w(e)

2

≤

 ∑
e∈E(Si,Si)

x(e)2

w(e)

 ·

 ∑
e∈E(Si,Si)

w(e)

 .

This proves (14.3) and completes the proof of the lemma.

As a simple application of the above lemma we can show that in a
√
n×

√
n grid there is a pair of vertices

s, t such that Reff(s, t) ≥ Ω(log(n)).

Next, we discuss methods for upper bounding the effective resistance between a pair of vertices s, t. Note
that to upper bound the effective resistance it is enough to construct a feasible flow that sends one unit of
flow from s to t, then the energy of the flow will give an upper bound on Reff(s, t).

For example, suppose there are k edge disjoint paths each of length at most ℓ from s to t. Then we can
construct x by sending 1/k amount of flow on each path and

E(x) ≤
k∑

i=1

∑
e∈Pi

x(e)2 =

k∑
i=1

∑
e∈Pi

1

k2
≤ kℓ

k2
.

Unfortunately, we may not be able to find many edge disjoint paths between s, t even though Reff(s, t) is
small. For example, in a k-dimensional hypercube there are at most k edge disjoint paths between each pair
of vertices because the degree of each vertex is k. But because the length of each path between s = 00 . . . 0
and t = 11 . . . 1 is at least k, the best upper bound that we can get is O(1).
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14.2 Hitting Time

Consider a simple random walk on a (weighted) graph G, that is at a given vertex u it goes to random
neighbor v with probability proportional to wu,v, i.e.,

P [X1 = v|X0 = u] =
wu,v

dw(u)
,

where dw(u) =
∑

v′∼u wu,v′ is the weighted degree of u. In this section we study the hitting time: for two
vertices u, v ∈ V , we define the hitting time Hu,v from u to v as the expected number of steps for the random
walk to hit v (for the first time) when started at u. Formally, define the random variable

T = min{t ≥ 0 : Xt = v}.

Then Hu,v = E [T |X0 = u]. Note that his quantity is not necessarily symmetric, i.e., Hu,v ̸= Hv,u in general.

Lemma 14.5. Let b be the vector which injects dw(u) unit at any vertex u and extracts dw(V ) at v, and let
p be the corresponding potential vector. For any vertex u ̸= v,

Hu,v = p(u)− p(v).

Proof. Fix a vertex v, and let h : V → R≥0 be the hitting time vector. Then, for any u ̸= v, we can write
the following system of linear equations for the Hitting time:

h(u) = 1 +
∑
u′

wu,u′

dw(u)
h(u′)

Equivalently,

dw(u) =
∑
u′

wu,u′(h(u)− h(u′)) = LGh(u)

Adding up the above equalities for u ̸= v we obtain,

dw(V )− dw(v) =
∑
u′

wu′,v(−h(v) + h(u′)),

i.e., the constraint for v is redundant.

Now, if we consider the demand vector b = dw − 1vdw(V ), i.e., we inject dw(u) at any vertex u ∈ V and we
extra all the flow at v and solve for p then p exactly satisfies all of the above equations:

LGp = b

As alluded to before these equations have a unique solution (when the graph is connected) up to a shift,
i.e., if h is a solution then so is h + α1 for any α ∈ R. So, we add one extra constraint that h(v) = 0.
Equivalently, p(u)− p(v) = h(v)− h(u) = h(v) as desired.

14.3 Commute Time

Given a pair of vertices u, v, the commute time Cu,v is defined as:

Cu,v := Hu,v +Hv,u.
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Theorem 14.6 (Commute Time). For any weighted graph G = (V,E) and any pair of vertices u, v,

Cu,v = Reff(u, v)dw(V ).

Proof. We build on the proof of Theorem 14.6. We consider 3 different demand vectors:

• Let bA be the demand vector that injects dw(x) at any vertex x and extracts dw(V ) at v.

• Let bB be the demand vector that injects dw(V ) at u and extracts dw(x) at any vertex x.

• Let bC = bA + bB . In particular, bC injects dw(V ) at u and extracts it at v.

By, Theorem 14.6,

Hu,v = pbA(u)− pbA(v).

By symmetry,

Hv,u = −(pbB (v)− pbB (u))

So,

Cu,v = pbA(u) + pbB (u)− (pbA(v) + pbB (v)) = pbC (u)− pbC (v).

Most importantly, in the second equality we used that p can be obtained by solving a linear system involving
the same matrix L†

G.

But by definition of effective resistance

pbC (u)− pbC (v) = dw(V )(pbu,v (u)− pbu,v (v)) = dw(V )Reff(u, v).

As an application, we can use ?? to give another proof of Lemma 14.1. Say for a triple of vertices s, t, u we
want to show

Reff(s, t) + Reff(t, u) ≥ Reff(s, u)

By ?? this is equivalent to

C(s, t) + C(t, u) ≥ C(s, u).

Now, by the definition of expected Hitting time this is equivalent to

H(s, t) +H(t, s) +H(t, u) +H(u, t) ≥ H(s, u) +H(u, s).

Rearranging the terms we need to show

(H(s, t) +H(t, u)) + (H(u, t) +H(t, s)) ≥ H(s, u) +H(u, s).

But, for an triple of vertices s, t, u we have

H(s, t) +H(t, u) ≥ H(s, u).

The expected number of steps to go from s to u is smaller than the expected number of steps to go from s
to u while visiting t along the way.
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14.4 Cover Time

The cover time of G = (V,E,w) starting from u is the quantity covu(G) which is the expected number of
steps needed to visit every vertex of G started at u. Again, we can define this formally: Let

T = min{t ≥ 0 : {X0, X1, . . . , Xt} = V }.

Then,

covu(G) = E [T |X0 = u] .

Finally, we define the cover time of G as cov(G) = maxu∈V covu(G).

We can now use Theorem 14.6 to give a universal upper bound on the cover time of any graph.

Theorem 14.7 (Cover Time). For any unweighted connected graph G = (V,E,w), we have cov(G) ≤
2|E|(|V | − 1).

Proof. Fix a spanning tree T of G. Then we have

cov(G) ≤
∑

{x,y}∈T

Cx,y.

The right-hand side can be interpreted as a very particular way of covering the graph G: First, given the
tree T , we can turn it into a TSP tour by visiting every edge twice, we start at some node x0 and ”walk”
around the edges of the T in order x0, x1, x2, . . . , x2(n−1). In such a case the expected time from x0 to get
to x1, is Hx0,x1 , and similarly to cover G it takes at most,

2(n−1)∑
i=0

Hxi,xi+1
=

∑
{x,y}∈T

Cx,y.

Note that this is just one particular way to visit every node of G, so it gives an upper bound on the cover time.
Finally, we note that if {x, y} is an edge of the graph, then by Theorem 14.6 we have Cxy = 2|E|Reff(x, y) ≤
2|E|. Here we use the fact that for every edge {x, y} of G, the effective resistance is at most the resistance
of the edge connecting x to y. A candidate flow is just send one unit of flow directly from x to y on the
edge.

14.5 Examples of Cover Time

First observe that if G is a d regular graph by a direct application of Theorem 14.7,

cov(G) ≤ dn(n− 1).

The path Consider first G to be the path on vertices {0, 1, ..., n}. Then

H0,n +Hn,0 = C0,n = 2nReff(0, n) = 2n2.

Since H0,n = Hn,0 by symmetry, we conclude that H0,n = n2. Note that Theorem 14.7 implies that
cov(G) ≤ 2n2, and clearly cov(G) ≥ H0,n = n2, so the upper bound is off by at most a factor of 2.
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The lollipop. Consider next the ”lollipop graph” which is a path of length n/2 from u to v with an n/2
clique attached to v. We have

Hu,v +Hv,u = Cu,v = Θ(n2)Reff(u, v) = Θ(n3).

On the other hand, we have already seen that Hu,v = Θ(n2). We conclude that Hv,u = Θ(n3), hence
cov(G) = Ω(n3). Again, the bound of Theorem 14.7 is cov(G) ≤ O(n3), so it’s tight up to a constant factor
here as well.

The complete graph. Finally, consider the complete graph G on n nodes. In this case, Theorem 14.7
gives cov(G) ≤ O(n3) which is way off from the actual value cov(G) = Θ(n log n) (since this is just the
coupon collector problem).

14.6 Mathews Bound

Theorem 14.8 (Mathews Bound). If G = (V,E) is an unweighted connected graph and Rmax := maxx,y∈V Reff(x, y)
is the maximum pairwise effective resistance in G, then

|E|Rmax ≤ cov(G) ≤ O(log n)|E|Rmax.

Proof. One direction is straightforward:

cov(G) ≥ maxHu,v ≥ 1

2
max
u,v

Cu,v ≥ 1

2
|E|maxReff(u, v) = |E|Rmax.

For the other direction, we will examine a random walk of length 2c|E|Rmax log n divided into log n epochs
of length 2c|E|Rmax. Note that for any vertex v and any epoch i, we have

P [v unvisited in epoch i] ≤ 1

c
.

This is because no matter what vertex is the first of epoch i, we know that the hitting time to v is at most
maxu Hu,v ≤ maxuCu,v = 2|E|Rmax. Now Markov’s inequality tells us that the probability it takes more
than 2c|E|Rmax steps to hit v is at most 1/c. Therefore, the probability that we don’t visit v in any epoch
is at most c− logn ≤ n− log c, and by a union bound, the probability that there is some vertex left unvisited
after all the epochs is at most n1−log c. We conclude that

cov(G) ≤ 2c|E|Rmax log n+ n1−log cn3

where we have used the weak upper bound on the cover time provided by Theorem 14.7. Choosing c to be
a large enough constant makes the second term negligible, yielding

cov(G) ≤ O(|E|Rmax log n),

as desired.


	Properties of Effective Resistance
	Bounding the Effective Resistance

	Hitting Time
	Commute Time
	Cover Time
	Examples of Cover Time
	Mathews Bound

