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These notes are based on notes by Sasha Nikolov.

12.1 Introduction

Let A be an m× n real-valued matrix, the discrepancy of A is

disc(A) = min
x∈{±1}n

∥Ax∥∞.

When the entries of A are in [−1, 1], we have an upper bound disc(A) = O(
√
n logm), with high probability,

by taking a uniformly random x ∈ {±1}n. We don’t prove this here and we leave it as an exercise.

The following existential proved by Sperner in 1985.

Theorem 12.1 (Six Standard Deviations Suffice Sperner’85). Let A be any m × n matrix with entries in
[−1, 1]. Then

disc(A) = O(
√
n log(m/n)).

For decades it remained an open problem whether this result can be proven algorithmically, i.e., whether
there is an efficient algorithm to find a vector x satisfying the conclusion of the above theorem. This was
resolved by Bansal in 2010 where he came with a randomized algorithm using SDP. In this lecture we describe
a simpler proof/algorithm in a follow up work by Lovett and Meka.

12.2 The Algorithm

Theorem 12.2. Let m,n be positive integers with m ≥ n and let A be any m× n matrix with entries from
[−1, 1]. There is a randomized algorithm running in time polynomial in m,n which, when given A as input,
outputs an x ∈ {±1}n such that

∥Ax∥∞ = O

(√
n log

m

n

)
with high probability.

In specifying and analyzing the algorithm, we take a geometric viewpoint. Let C be a universal constant to
be specified later, and consider the convex polytope:

K =
{
x ∈ Rn : ∥Ax∥∞ ≤ C

√
n log(8m/n)

}
.
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If a1, a2, . . . , am are the rows of A, we can re-write this as:

K =
{
x ∈ Rn : ∀i ∈ [m], |⟨ai, x⟩| ≤ C

√
n log(8m/n)

}
.

Intuitively, K is a convex polytope defined as the intersection of “slabs” of the form:

|⟨ai, x⟩| ≤ C
√
n log(8m/n).

The algorithm performs an approximate continuous random walk, starting from the origin, insideK∩[−1, 1]n.
When the walk intersects a facet of this polytope, it restricts further steps to that facet, until reaching a
vertex of K ∩ [−1, 1]n. Ideally, this vertex is in {±1}n, but we will show it has a constant fraction of
coordinates in {±1}.

We reduce Theorem 2 to the following result:

Theorem 12.3. Let m ≥ n be positive integers and let δ = 1/
√
n. There is a randomized polynomial-time

algorithm and a constant C such that, given an m × n matrix A and a vector x(0) ∈ [−1, 1]n, it finds an
x ∈ [−1, 1]n such that with probability at least 1/6− ε (for any 1/6 > ε > 0):

1. For each i = 1, . . . ,m, we have

|⟨ai, x− x(0)⟩| ≤ C∥ai∥2
√

log(8m/n).

2. |xi| > 1− δ for at least n/10 coordinates i.

Having this we prove Theorem 12.2.

Proof Sketch of Theorem 12.2 Start with x(0) = 0, run the algorithm from Theorem 3 and obtain an
x ∈ [−1, 1]n. Let x′ be the vector where coordinates failing condition (2) are unset, and recursively apply the
algorithm on x(0) = x′ and the submatrix A′ (removing satisfied columns). Since we fix a constant fraction
of coordinates each time, after S = 10 log n steps, all indices satisfy condition (2). The total discrepancy is:

∥Ax∗∥∞ ≤ C
√
n
√
log(8m/n) + C

√
n/10

√
log(8m/(n/10)) + . . .

<
√
n

∞∑
s=0

C
√
log(8m · 10s/n)

10s/2
< C ′

√
n log(m/n)

for some constant C ′. Finally, rounding x∗ to {±1}n adds at most O(
√
n) discrepancy since n/δ =

√
n.

Let N (µ, σ2) denote the mean µ Gaussian distribution with variance σ2. The algorithm is formally described
in Algorithm 1.
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Algorithm 1 Main Algorithm

1: Input: A ∈ Rm×n, x(0) ∈ [−1, 1]n

2: Output: x ∈ [−1, 1]n

3: for t = 1 to T do
4: Dt = {i : |⟨ai, x(t−1) − x(0)⟩| ≥ C∥ai∥2

√
log(8m/n)− δ}

5: Vt = {j : |x(t−1)
j | > 1− δ}

6: Wt = {y ∈ Rn : ⟨ai, y⟩ = 0,∀i ∈ Dt; yj = 0,∀j ∈ Vt}
7: Let {w1, . . . , wk} be orthonormal basis of Wt

8: Sample g1, . . . , gk ∼ N (0, 1)

9: ∆x(t) =
∑k

i=1 giwi

10: x(t) = x(t−1) + γ∆x(t)

11: end for
12: return x(T )

• The parameters δ, γ are small real values with 1/
√
n ≥ δ ≫ γ > 0. The integer T is chosen on the

order of 1/γ2.

• The set Dt contains the facets of K for which x(t−1) is almost tight.

• The set Vt contains facets of the cube [−1, 1]n that are nearly tight.

• The subspace Wt is the orthogonal complement of those constraints, meaning movement along Wt

maintains validity with respect to Dt and Vt.

In each iteration, we perturb x(t−1) by Gaussian noise projected onto Wt. This ensures:

• We do not increase discrepancy with respect to Dt.

• We do not alter coordinates already close to ±1 (i.e., in Vt).

Discussion of Parameters:

• δ defines how close a coordinate must be to ±1 to be considered “fixed.” This helps us manage rounding
error.

• γ is the step size in our random walk. We take a small step in a Gaussian direction within the valid
subspace.

Gaussian Stability: If g1, . . . , gk are i.i.d. samples from N (0, 1), and g = (g1, . . . , gk), then for any
a ∈ Rk:

⟨a, g⟩ ∼ N (0, ∥a∥22).

This property is usually called rotation invariance property of Gaussians. We don’t discuss the proof.

The following inequality is an analogue of the Azuma’s inequality for Gaussian random variables.

Lemma 12.4. Let 0 < σ ≤ τ . Suppose y1 ∼ N (0, σ2) and for all i > 1, yi − yi−1 | y1, . . . , yi−1 ∼ N (0, σ2
i )

with 0 < σi ≤ τ . Then:

Pr
[
|yℓ| > λ · τ ·

√
ℓ
]
≤ 2e−λ2/2, for all λ > 0.
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The main lemma now follows from the martingale concentration bound and the Stability of Gaus- sians. It
says that if the random walk is not “too long” then, on average, the number of tight discrepancy constraints
will be small.

Lemma 12.5. If T = O(1/γ2), then there exists a constant C such that

E [|DT+1|] = E
[∣∣∣{i ∈ [m] : |⟨ai, x(T ) − x(0)⟩| ≥ C∥ai∥2

√
log(8m/n)

}∣∣∣] ≤ n

4
.

Proof. Let C be a constant to be fixed later. By linearity of expectation,

E[|DT+1|] =
m∑
i=1

Pr
[
|⟨ai, x(T ) − x(0)⟩| ≥ C∥ai∥2

√
log(8m/n)

]
.

We expand the inner product as:

⟨ai, x(T ) − x(0)⟩ =
T∑

t=1

γ⟨ai,∆x(t)⟩,

where ∆x(t) =
∑k

j=1 gjwj for i.i.d. gj ∼ N (0, 1). By Gaussian stability,

γ⟨ai,∆x(t)⟩ = γ

k∑
j=1

gj⟨ai, wj⟩ ∼ N (0, σ2),

where σ2 = γ2
∑k

j=1⟨ai, wj⟩2 ≤ γ2∥ai∥22 since {wj} is orthonormal.

Let yt = ⟨ai, x(t) −x(0)⟩. The sequence y1, y2, . . . , yT satisfies the conditions of the martingale concentration
lemma with τ = γ∥ai∥2. Thus,

Pr
[
|⟨ai, x(T ) − x(0)⟩| > λ · γ∥ai∥2

√
T
]
≤ 2e−λ2/2.

Since T = O(1/γ2), choose λ = C
√

log(8m/n) with C ≥ 1/(γ
√
T ). Then

Pr
[
|⟨ai, x(T ) − x(0)⟩| > C∥ai∥2

√
log(8m/n)

]
≤ n

4m
.

Summing over all i ∈ [m], we conclude:

E[|DT+1|] ≤
n

4
.

Theorem 12.6 (Restated Theorem 12.3 – continued). Let x = x(T ) be the output of Algorithm 1. For γ
sufficiently small compared to δ, with high probability x(t) ∈ K∩[−1, 1]n for all t. This implies x(T ) ∈ [−1, 1]n,
satisfying the first property of Theorem 12.3.

Let x = x(T ) be the output of Algorithm 1. It is not hard to show that for γ much smaller than δ,
x(t) ∈ K ∩ [−1, 1]n for all t with high probability. We leave this detail as an exercise. This immediately gives
that x(T ) ∈ [−1, 1]n and that the first property in Theorem 12.3 is satisfied.

We now prove the second property: that at least n/10 coordinates of x satisfy |xi| > 1− δ.
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Let us estimate E[|VT |] using ∥x(T ) − x(0)∥22 ≤ n. Recall that

x(T ) − x(0) =

T∑
t=1

γ∆x(t).

For each t, let {w1, . . . , wk} be an orthonormal basis of Wt. Then:

E[∥∆x(t)∥22] =
k∑

j=1

E[g2j ] = k = dim(Wt) ≥ n− E[|Dt|]− E[|Vt|].

The samples gj are independent and have variance 1, so:

E[∥x(T ) − x(0)∥22] = γ2
T∑

t=1

E[∥∆x(t)∥22].

Since |Dt| ≤ |DT+1| and |Vt| ≤ |VT | since whenever the random walk is tight to a facet it remains tight, we
get:

n ≥ γ2
T∑

t=1

(n− E[|DT |]− E[|VT |]) = γ2T (n− E[|DT |]− E[|VT |]) .

Choose T = 2/γ2 to obtain:

E[|VT |] ≥
1

2
(n− 2E[|DT |]) ≥

n

4
.

Applying Markov’s inequality:

Pr
[
|VT | <

n

10

]
≤ n− E[|VT |]

9n/10
≤ 3n/4

9n/10
=

5

6
.

Thus, with probability at least 1/6, we have |VT | ≥ n/10. It is easy to verify that the algorithm runs in
polynomial time.
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