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1.1 Introduction to the Probabilistic Method

An old math puzzle goes: Suppose there are six people in a room; some of them shake hands. Prove that
there are at least three people who all shook each others’ hands or three people such that no pair of them
shook hands. Generalized a bit, this is the classic Ramsey problem. The diagonal Ramsey numbers R(k)
are defined as follows. R(k) is the smallest integer n such that in every two-coloring of the edges of the
complete graph Kn by red and blue, there is a monochromatic copy of Kk, i.e. there are k nodes such that
all of the

(
k
2

)
edges between them are red or all of the edges are blue. A solution to the puzzle above asserts

that R(3) ≤ 6 (and it is easy to check that, in fact, R(3) = 6).

In 1929, Ramsey proved that R(k) is finite for every k. We want to show that R(k) must grow pretty fast;
in fact, we’ll prove that for k ≥ 3, we have R(k) > 2k/2. This requires finding a coloring of Kn that doesn’t
contain any monochromatic Kk. To do this, we’ll use the probabilistic method: We’ll give a random coloring
of Kn and show that it satisfies our desired property with positive probability. This proof appeared in a
paper of Erdös from 1947, and this is the example that starts Alon and Spencer’s famous book devoted to
the probabilistic method which will be one of the main resources for this coruse.

Lemma 1.1. If
(
n
k

)
21−(

k
2) < 1, then R(k) > n. In particular, R(k) > 2k/2 for k ≥ 3.

Proof. Consider a uniformly random 2-coloring of the edges of Kn. Every edge is colored red or blue
independently with probability half each. For any fixed set of k vertices H, let EH denote the event that
the induced subgraph on H is monochromatic. An easy calculation yields

P [EH ] = 2 · 2−(
k
2).

Since there are
(
n
k

)
possible choices for H, we can use the union bound:

P [∃H s.t., EH ] ≤ 2 · 2−(
k
2) ·

(
n

k

)
.

Thus if 21−(
k
2)
(
n
k

)
< 1, then with positive probability, no event EH occurs. Thus there must exist at least

one coloring with no monochromatic Kk. One can check that if k ≥ 3 and n = 2k/2, then this is satisfied.

In the proof, we employed the following fundamental tool:

Fact 1.2 (Union Bound). If A1, A2, . . . , Am are arbitrary events, then P [A1 ∪A2 ∪ · · · ∪Am] ≤ P [A1] +
P [A2] + · · ·+ P [Am].
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1.2 Linearity of Expectations

Fact 1.3 (Linearity of Expectation). If X1, X2, . . . , Xn are real-valued random variables, then

E [X1 +X2 + · · ·+Xn] = E [X1] + E [X2] + · · ·+ E [Xn] .

The great fact about this inequality is that we don’t need to know anything about the relationships between
the random variables; linearity of expectation holds no matter what the dependence structure is.

Let’s consider a 3-CNF formula over the variables x1, x2, . . . , xn. Such a formula has the form C1∧C2∧· · ·∧Cm

where each clause is an or of three literals involving distinct variables: Ci = zi,1 ∨ zi2 ∨ zi,3. A literal is a
variable or its negation. For instance, (x2 ∨ x̄3 ∨ x̄4) ∧ (x3 ∨ x̄5 ∨ x̄1) ∧ (x1 ∨ x5 ∨ x4) is a 3-CNF formula.

Lemma 1.4. If ϕ is a 3-CNF formula with m clauses, then there exists an assignment that makes at least
7m/8 clauses evaluate to true.

Proof. We will prove this using the probabilistic method. For every variable independently, we choose a
uniformly random truth assignment: true or false each with probability 1/2. Let Ai equal 1 if clause Ci is
satisfied by our random assignment, and equal 0 otherwise. Then P [Ai = 1] ≥ 7/8 because there are 7 ways
to satisfy a clause out of the 8 possible truth values for its literals. Let A = A1 + · · ·+Am denote the total
number of satisfied clauses. By linearity of expectation,

E [A] =
∑
i

E [Ai] = 7m/8.

So, there must be an assignment that satisfies this many clauses.

1.3 Method of Conditional Expectations

The above lemma asserts that there exists an assignment satisfying at least 7m/8 many clauses, but what
if we wish to actually find one? One way is to randomly sample from the underlying distribution and then
check the resulting assignment. Analyzing the probability of success will require our tail bounds which we
will discuss in future lectures.

In this section, we will discuss a generic method that can turn many of the probabilistic method proofs
into even deterministic algorithms. Let S(x1, x2, . . . , xn) denote the expected number of satisfied clauses
given a partial truth assignment to the input variables, where we choose the unassigned variables uniformly
at random. We will use T to denote true, F to denote false, and * to denote that no assignment has been
chosen for that variable. For instance, S(⋆, ⋆, . . . , ⋆) denotes the expected number of satisfied clauses in a
random assignment, and we have already seen that

S(⋆, ⋆, . . . , ⋆) = 7m/8.

Note that a simple linear-time algorithm can estimate S(x1, x2, ..., xn) for any partial assignment x1, ..., xn ∈
{T, F, ⋆} by simply going through the clauses one by one.

As an example, consider the clause x1 ∨ x̄+ 2 ∨ x̄4. The probability that a random assignment satisfies this
is 7/8. If we assign x1 = F , then the probability becomes 3/4, and if we set x1 = T , then the probability
becomes 1. Observe that

S(⋆, ⋆, . . . , ⋆) =
1

2
S(F, ⋆, . . . , ⋆) +

1

2
S(T, ⋆, . . . , ⋆).
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Consequently, it must hold that

max{S(F, ⋆, . . . , ⋆), S(T, ⋆, . . . , ⋆)} ≥ S(⋆, ⋆, . . . , ⋆).

As we have just argued, it’s possible to compute both these quantities and figure out which is larger. We
can then set x1 to the corresponding value and keep assigning truth values recursively. Since the value of S
never goes down and it starts at 7m/8, when the algorithm finishes we must satisfy at least 7m/8 fraction
of clauses. Note that the algorithm may indeed satisfy more than 7m/8 fraction of clauses.

1.4 Choosing the Right Distribution

Here is a more complicated example in which the choice of distribution requires a preliminary lemma. Let
V = V1 ∪ · · · ∪ Vk, where the Vi’s are disjoint sets, each of size n. Let h :

(
V
k

)
→ {±1} be a two-coloring of

the k-sets. A k-set E is crossing if it contains precisely one point from each Vi. For S ⊂ V set

h(S) :=
∑

E∈(Vk)

h(E). (1.1)

Theorem 1.5. Suppose h(E) = +1 for all crossing k-sets E. Then there is an S ⊂ V for which

|h(S)| ≥ ckn
k

Here ck is a positive constant, which is independent of n.

Perhaps, the first attempt is to choose each element of V in S, independently, with probability 1/2. It turns
E [h(S)] for such a distribution can be even negative, e.g., assume h(E) = −1 for every non-crossing k-set. If
you think about it deeply, you would wonder why 1/2? As we will see, choosing elements of S independently
is right, but we need to be careful on the marginals; we want to choose the marginals based on the function
h(.) given to us.

But how? Let p1, . . . , pk be the marginals of elements of V1, . . . , Vk to be determined, i.e., we sample elements
in S independently but elements from the same Vi are chosen with the same marignals. Given p1, . . . , pk,
we define a random set R where for every element x ∈ Vi, we add x to S with probability pi, independent
of every other element.

Define a random variable
XR := h(R). (1.2)

It turns out that we can write E [XR] as a k-homogeneous polynomial in p1, . . . , pk:

E [XR] =
(1.2)

∑
S

P [R = S]h(S)

=
(1.1)

∑
E∈(Vk)

P [E ⊆ R] · h(E)

=
∑

a1,...,ak∈Nk∑
i ai=k

∑
E:|E∩Vi|=ai

k∏
i=1

pai
i · h(E)

=
∑

a1,...,ak∈Nk∑
i ai=k

k∏
i=1

pai
i

 ∑
E:|E∩Vi|=ai,∀i

h(E)


︸ ︷︷ ︸

=:ca1,...,ak

= q(p1, . . . , pk).
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In the third equality, we classify all k-sets by their ”type” namely the size of their intersections with V1, . . . , Vk.

To prove the theorem, we need to show that there is a choice of R such that |h(R)| ≥ ckn
k. By the

probabilistic method it is enough to show that |E [XR] | ≥ ckn
k. By the above equation it is enough to show

that there is a choice of p1, . . . , pk such that |q(p1, . . . , pk)| ≥ ckn
k. That is what we show in the rest of the

proof.

In the above equations, we get the multivariate polynomial q in terms of p1, . . . , pk. The following properties
of q are immediate:

• q is k-homogeneous; i.e., every monomial of q has degree k.

• Since h(E) = +1 for all crossing sets, we have c1,...,1 = |V1 × · · · × Vk| = nk.

• For every a1, . . . , ak ∈ [k]k with
∑

i ai = k, we have

ca1,...,ak
≤

h(E)=±1,∀E

∑
E:|E∩Vi|=ai,∀i

+1 ≤ nk

Finally, by the following fact, there exists a choice of p1, . . . , pk such that |q(p1, . . . , pk)/nk| ≥ ck as desired.

Fact 1.6. Let Pk denote the set of all k-homogeneous polynomials f ∈ R[p1, . . . , pk]k such that all coefficients
of f(.) have absolute value at most one and the monomial p1 . . . pk have coefficient exactly one. Then, for
all f ∈ Pk

max
p1,...,pk∈[0,1]

|f(p1, . . . , pk)| ≥ ck

where ck > 0 is an absolute constant only as a function of k.

Proof. Set
M(f) := max

p1,...,pk∈[0,1]
|f(p1, . . . , pk)|.

The main observation is that for any f ∈ Pk, M(f) > 0. This is simply because f is not the identically zero
polynomial (it has one non-zero monomial. So over a field of size at least the degree of f , it cannot evaluate
to zero. Lastly, we observe that Pk is compact and M : Pk → R is a continuous map. So M must have a
minimum value that is non-zero, i.e., minf∈Pk

M(f) ≥ ck.

1.5 The Alteration Method

Sometimes in our probabilistic method proof, we may not directly obtain the object of interest. Instead, we
may try to sample a “good enough” object and then show that by a small number tweaks we can turn the
object into a feasible object.

Recall that R(k) is the smallest integer n such that in every two coloring of the edges of the complete graph
Kn by red and blue there is a monochromatic copy of Kk. The following is a stronger variant of Lemma 1.1

Theorem 1.7. For any integer n and k, we have R(k) > n−
(
n
k

)
21−(

k
2).

Proof. As in Lemma 1.1, consider a uniformly random 2-coloring of the edges of Kn. Let EH be the even
that the subgraph on H is monochromatic. Let

X =
∑

H∈(nk)

EH ,
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be the number of monochromatic copies of Kk in our two-colored graph. By linearity of expectations,

E [X] =
∑

H∈(nk)

E [EH ] = 21−(
k
2) ·

(
n

k

)

Now, it follows that there must exists a two-coloring such that the number of monochromatic copies of Kk

is at most E [X]. Consider such a coloring.

Now, we discuss the alteration part: We know that we have (at most) ⌊E [X]⌋ copies of Kk. We are going
to delete one (arbitrary) vertex from each of these copies. Note that in principal these copies may share
vertices so we may be able to delete all of them by removing a few vertices, but in the worst case, these
copies are disjoint. So, we can delete all of them by removing at most ⌊E [X]⌋ vertices of G. The resulting

graph has at least n−
(
n
k

)
21−(

k
2) vertices and has no copies of Kk.

Now, we are left with the ”calculus” problem of for what values of n, can we optimize the inequality. It
turns out with a bit of calucluations that

R(k) >
k

e
2k/2.

This is slightly better than what we can show with Lemma 1.1, that R(k) > k
e
√
2
2k/2.

In future lectures, we will see how to use a more sophisticated technique, called the Lovasz Local lemma, to
get a slightly better bound.
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