CSE 525: Randomized Algorithms Spring 2023

Lecture 9: Intro to Martingales
Lecturer: Shayan Oveis Gharan 04/25/2028

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

We have seen that if X = X; 4+ -+ + X, is a sum of independent {0, 1} random variables, then X is tightly
concentrated around its expected value E[X]. The fact that the random variables were {0, 1}-valued was

not essential; similar concentration results hold if we simply assume that they are in some bounded range
[-L, L]

We further see that if the independence condition is relaxed and the random variables are assumed to
be negatively correlated still the same concentration bound holds. In this lecture we will discuss another
generalization of the independence assumption.

Consider a sequence of random variables Xg, X1, X5,.... We say the sequence is {X;} is a martingale with
respect to another sequence of random variables {Y;} if for every 4, it holds that

E[X;1|Yo,Y1,...,Yi] = X;.

Note that this is equivalent to
E[X;+1 — X;|Y0,Y1,..., Y] = 0.

If one thinks of {Yp,Y1,...,Y;} as all the ”information” up to time i, then this says that the difference
Xit+1 — X, is unbiased conditioned on the past information up to time q.

We say Xo, ..., is a martingale w.r.t itself, if for any ¢ > 1,
E[Xit1]| X0, X1,..., X;] = X;
for every i = 0,1,2,.... In such a case, we can write for any 7, we have
E[X;] =E[E[X;|Xo,...,Xiz1]] =E[X;4] =--- =E[X(].
where we used the law of conditional expectations,
EE[X|]Y]] =E[X].

Example 9.1. Consider a gambler that goes to a casino and bets every day. Let Y; be a random variable
indicating the amount of money the gambler wins or loses on day i and let X; be the gamblers total win/loss
up to day i. Then,

E[Xiy1]Y0,...,Yi] = Xi 1 +E[Y] = X; 4.

So, it is a martingale. Note that this is also a martingale even if the amount of bet on day @ is dependent
on the total win or loss up to day i. Here we assumed B [Y;] = 0 that is the casino is fair.

Remark 9.2. The correct level of generality at which to define martingales involves a filtration. Formally,
this is an increasing sequence of c-algebras on our measure space (Q,u, F): Fo CFy C--- C F. Then, a
sequence of random variables {X;} is a martingale with respect to the filtration {F;} if E [X;41|Fi] = X; for
every i > 0.
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9.1 Doob Martingales

One reason martingales are so powerful is that they model a situation where one gains progressively more
information over time. Suppose that U is a set of objects, and f : U — R. Let X be a random variable
taking values in U, and let {Y;} be another sequence of random variables. The associated Doob martingale
is given by

In words, this is our "estimate” for the value of f(X) given the information contained in {Yp,...,Y;}. To
see that this is always a martingale with respect to {Y;}, observe that

E[X;1|Yo,...,Yi] = E[E[f(X)|Yo,...,Vii1] [Yo,..., Y] = E[f(X)|Yo,..., Y] = X;

where we have used the tower rule of conditional expectations.

Example 1: Balls in bins Suppose we throw m balls into n bins one at a time. At step i, we place ball
¢ in a uniformly random bin. Let Y7,Y5,...,Y,, be the sequence of (random) choices, and let Y denote the
final configuration of the system, i.e. exactly which balls end up in which bins. Now, we can consider a
functional like f(Y) = # of empty bins. Then, if

then {X;} is a (Doob) martingale. It is straightforward to calculate that

E[Xn] = E[Xo] = E[f(Y)] =n- (1 — 1/n)™.

Suppose we are interested the concentration of X, = f(Y) around its mean value. Of course, we can write
X =214+ Z, where Z; is the indicator of whether the i-th been is empty after all the balls have been
thrown. But note, unfortunately, that the {Z;} variables are not independent, in fact they are negatively
correlated. In particular, if we know that Z; = 1 (bin 1 is empty), it decreases slightly the likelihood that
other bins are empty. So, we can use concentration inequalities for Negatively correlated random variables,
but we will see a different technique to prove that ). Z; is concentrated.

The vertex exposure filtration Recall that G, ;, denotes the random graph model where an undirected
graph on n vertices is chosen by including every edge independently with probability p. Suppose the vertices
are numbered {1,2,...,n} Let G ~ G, , and denote by G; the induced subgraph on the vertices {1,...,4}.
Go denotes the empty graph. Let x(G) denote the chromatic number of G, i.e., the minimum number of
colors we need to obtain a proper coloring of the vertices of G and consider the Doob martingale X; =
E [x(G)|Go, ..., G;]. If we wanted to understand concentration properties of X,, = chi(G), this seems even
more daunting. The chromatic number is a very complicated parameter of a graph, it is not even polynomial
time computable (assuming P # NP)! Nevertheless, we will see that martingale concentration inequalities
allow us to achieve tight concentration using very limited information about a sequence of random variables.

9.2 Azuma-Hoeffding Inequality

Say that a martingale {X;} has is (¢1,ca,...,)-bounded increments if | X; — X;_1| < ¢; for all i« > 1 with
probability 1.
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Theorem 9.3. If {X;} is (c1,¢a,...)-bounded a martingale then, for every X > 0, and n > 0, we have
2 )\2

S -
PX,>Xo+A<e 2=, P[X,<Xg—A<e X
Lemma 9.4. Let X be a random variable with E[X] =0 and |X| <1 w.p. 1. Then,
E [eaX] < ea2/2'
Proof. The first observation is that e®X is a convex function (in the range [—1,+1]). Therefore, it lies

below the linear function which connects, e™® to e*®. In particular, for any z € [—1,+1], writing z =
142 (1) + 152(—1) we have

1+ 1—=x e 4e @ et —e @
ax < +a —a __
e < 72 e’ + 72 e 5 —+x 5
Using X € [—1, 1], taking expectation from both sides we obtain
ea +e—a
E aX <
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Now, we use the above lemma to prove the Azuma-Hoeffding inequality:

Proof. Let t be a parameter that we choose later. We write
E [etXn | Xo, . .. 7Xn71] —-F [etXn,flet(Xn_Xn—l)|X07 o aXn—l}

_ etanlE |:et(X7L7X"L*1)|X0, e ,Xn71:|

< etxn,let%ip

Lemma 9.4

where in the last inequality we used that E [X,, — X,,_1|Xo, ..., X,,—1] = 0 and that |X,, — X,,—1] < ¢, w.p.
1. Now, taking expectations from both sides, we write

E [etX"] =E []E [etX”|Xo, e ,anlﬂ <E [etx"*l} et’en/2,
So, by induction,

E [etX"] < exp <t2 Zn: c§/2>

i=1
Finally (assume X, = 0 for simplicity), we write,

tX iy B[] 2N~ 2
PIX,>A=Ple* > <——— <exp|t Zci/th)\

= X
¢ i=1
Optimizing for ¢ we need to set t = %62 And, we get
=1 "1
)\2
P(X,>)\<e ———
R )

as desired. O
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9.3 Concentration of Lipschitz Functions

Let f:Uy x Uy x -+- x U, — R be a function. We say f is c¢1,c¢a,...,c, Lipschitz if for any 1 < i < n and
for any 21 € Uy, 29 € Us,...,xi—1 € Uj_1, 24,2, € Uiy, xiv1 € Uig1, ..., Ty € U, we have

|f(x1, .o mn) — f(@1, e i1, T Ty, - )| <
Then,

)\2
Por ozt xeeoxt, (@1, 2n) 2 Ef + 2] <exp (—w) )

where 1, ..., x, are chosen independently from Uy, ..., U,.

Proof. Consider the product distribution, where Y; is chosen from U; independently. Define a Doob marti-
nagle as follows: Xg =Ef(Y1,...,Y,). For every i,

Xi =E [f(Y)|Y17 s 7le} = Exi+17--<7xn~U1ﬂ+1X"'XUn [f(Yla .. 'aYi7$i+17 v ,l‘n)} .

Then, the resulting martingale is ¢y, . . . , ¢, bounded. So, by Azuma-Hoeffding’s inequality it is concentrated.l
O
Remark 9.5. The above theorem means that if we have any set of independent random variable Zy, ..., Zy,

and some quantity f(Z) that we care about does not depend too much on changing any single piece of
information, then f(Z) is tightly concentrated about its mean. This is a vast generalization of the fact that
sums of independent, bounded random variables are highly concentrated

Remark 9.6. This fact also generalizes beyond independent. Pemantle and Peres proved that any Lipschitz
function of strongly Rayleigh distributions is tightly concentrated around its expected value. Cryan, Guo
and Mousa proved that any Lipschitz function on (discrete) log-concave probability distributions is tightly
concentrated around its expected value.

9.4 Applications

Balls in Bins. First let’s apply the Azuma-Hoeffding inequality to the balls and bins process. Recall
that for a sequence of choices Y7,...,Y;, (where Y; is the bin that the i-th ball is thrown into), we put
f(Y1,...,Y,) to be the number of empty bins. Then, clearly f is 1-Lipschitz: Changing the fate of ball i can
only change the number of empty bins by 1. Therefore the corresponding martingale X; = E[f|Y1,...,Y]]
has 1-bounded increments, and Azuma’s inequality implies that

P[X > E[X]+ )] < e ¥/2m

Recall that Xo = E[X,] = n(1 — 1/m)™. Consider the situation where m = n and thus X, = n/e. If we
A = ¢y/m, then with probability 1 — e~ the number of empty bins is in the interval [n/e — cy/m, n/e + cy/n)

The chromatic number. Similarly, consider the vertex exposure martingale. We have to be a little more
careful here to describe a graph G by a sequence (Z1, ..., Z,) of independent random variables. The key is
to think about Z; containing the information on edges from vertex i to the vertices {1,...,i — 1} so that
we have independence. Since we can identify a graph G with the vector (Z1,...,Z,), we can think of the
chromatic number as a function x(Zi,...,Z,). The function y satisfies the 1-Lipschitz property because
changing the edges adjacent to some vertex ¢ can only change the chromatic number by 1. The chromatic
number cannot increase by more than one because we could always color ¢ a new color; it cannot decrease
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by more than one because if we could color the graph without vertex ¢ with ¢ colors, then we can color the
whole graph with ¢+ 1 colors. So the martingale X; = E [x(G)|Z1,..., Z;] has 1-bounded increments and
Azuma’s inequality tells us that

P [x(G) > E[x(G)] + A] < e /2",

Even without having any idea how to compute E [[] x(G)], we are able to say something significant about its
concentration properties.

Remark 9.7. It turns out that if G ~ G(n,1/2), then E[[] x(G)] = n/(2logyn), so the concentration window
- which is O(y/n) - is again quite small with respect to the expectation.
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