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Lecture 8: Strongly Rayleigh Distributions
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

The main goal of this lecture is to define a systematic way to study negative correlation and negative
association. We will study a recently developed theory of negative dependence using the field of geometry
of polynomials.

Definition 8.1 (d-homogeneous). A polynomial p ∈ R[z1, . . . , zn] is d-homogeneous if p(λz1, . . . , λzn) =
λdp(z1, . . . , zn) for any λ ∈ R.

A multivariate polynomial p ∈ R[z1, . . . , zn] is H-stable (or stable for short) if p(z1, . . . , zn) ̸= 0 whenever
(z1, . . . , zn) ∈ Hn where

H = {c ∈ C : ℑ(c) > 0}

is the upper-half of the n-dimensional complex plane. We say p is real stable if all coefficients of p are real.
Unless otherwise specified, all polynomials that we work with in this course have real coefficients.

Fact 8.2. A univariate polynomial p ∈ R[t] is real rooted iff it is real stable.

This simply follows from the fact that the roots of p come in conjugate pairs. So, if p has a root t with
ℑ(t) < 0, we have t̄ is also a root with ℑ(t̄) > 0.

So, it turns out that this definition is the right generalization of the real rootedness to multivariate polyno-
mials.

Let us discuss several examples of real stable polynomials

Linear Functions: A linear polynomial p = a1z1 + · · ·+ anzn is real stable iff a1, . . . , an ≥ 0. To see this
note that if all zi have positive imaginary value then any positive combination also has a positive imaginary
value and thus is non-zero.

Elementary Symmetric Polynomial: For any n and any k the elementary symmetric polynomial
ek(z1, . . . , zn) =

∑
S∈(nk)

∏
i∈S zi is real stable. I leave this as an exercise.

Non-example The polynomial z21 + z22 is not real stable; for example let z1 = eπi/4 and z2 = e3πi/4.
Similarly, the polynomial z1z2 + z3z4 is not real stable (recall that this was an example of a generating
polynomial that satisfies negative lattice condition but it is not negatively correlated).

8.1 Closure Properties

The following theorem of Hurwitz simply following from the fact that the roots of a polynomial are continuous
functions of its coefficients.
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Lemma 8.3 (Hurwitz [Hur95]). Let {pk}k≥0 be a sequence of Ω-stable polynomials over z1, . . . , zn for a
connected and open set Ω ⊆ Cn that uniformly converge to p over compact subsets of Ω. Then, p is Ω-stable.

One of the fundamental properties of real stable polynomials are their closure properties. A real stable
polynomial is closed under the following operations:

Product If p, q are real stable so is p · q.

Symmetrization If p(z1, z2, . . . , zn) is real stable then so is p(z1, z1, z3, . . . , zn).

Specialization If p(z1, . . . , zn) is real stable then so is p(a, z2, . . . , zn) for any a ∈ R. First, note that
for any integer k, pk = p(a + i2−k, z2, . . . , zn) is a stable polynomial (note that pk may have com-
plex coefficients). Therefore by Hurwitz theorem 8.3, the limit of {pk}k≥0 is a stable polynomial, so
p(a, z2, . . . , zn) is stable.

External Field If p(z1, . . . , zn) is real stable then so is q(z1, . . . , zn) = p(λ1 · z1, . . . , λn · zn) for any positive
vector w ∈ Rn

≥0. If q(z1, . . . , zn) has a root (z1, . . . , zn) ∈ Hn then (λ1z1, . . . , λnzn) ∈ Hn is a root of
p so p is not real stable.

Inversion If p(z1, . . . , zn) is real stable and degree of z1 is d1 then p(−1/z1, z2, . . . , zn)z
d1
1 is real stable.

This is because the map z1 7→ −1/z1 is a bijection between H and itself.

Differentiation If p(z1, . . . , zn) is real stable then so is q = ∂p/∂z1. This follows from Gauss-Lucas theorem.
If q(z1, . . . , zn) is not real stable it has a root (z

∗
1 , . . . , z

∗
n). Define f(z1) = p(z1, z

∗
2 , . . . , z

∗
n). Then, f

′(z1)
has a root inH. But the roots of f ′(z1) are in the convex hull of the roots of f(z1) we get a contradiction
because the complement of H is convex.

8.2 Strongly Rayleigh Distributions

In the previous lecture we observed that the generating polynomial of a family of n independent Bernoullis
can be written as follows:

n∏
i=1

(pizi + 1− pi).

Note that this polynomial is real stable simply because it is a product of linear (real stable) polynomials.

Borcea Branden and Liggett [BBL] in an influential paper introduced a new class of probability distributions,
namely Strongly Rayleigh distributions. These are all probability measures µ : 2[n] → R≥0 such that gµ is
real stable.

One of the nice properties of SR distributions is that the closure properties of real stable polynomials nicely
translate into closure properties of SR distributions.

Product Product of two SR distributions is SR.

Conditioning if µ is SR then for any i ∈ [n], µ|i and µ|i are SR. This because

gµ|i(z1, . . . , zi−1, zi+1, . . . , zn) =∝ gµ(z1, . . . , zi−1, zi = 0, zi+1, . . . , zn), and

gµ|i(z1, . . . , zi−1, zi+1, . . . , zn) ∝ ∂zigµ(z1, . . . , zn).



Lecture 8: Strongly Rayleigh Distributions 8-3

Projection Given a probability distribution µ, and a set S ⊆ [n], the projection of µ onto S is the distri-
bution the trace outs every variable not in S, or only looks at elements in S,

gµS
({zi}i∈S) = gµ({zi = 1}i/∈S , {zj}j∈S)

External Field Given any λ ∈ Rn
≥0, suppose we put λi copies of i for all i, the resulting distribution is still

SR since gµ(λ1z1, . . . , λnzn) is real stable.

Truncation If µ is SR then for any integer k > 0, the measure µk that is µ restricted to subsets of size k
is SR, i.e., the measure where for for every S ∈

(
n
k

)
,

µk(S) =
µ(S)∑

T∈(nk)
µ(T )

.

One of the most important family of real-stable polynomials is the determinant polynomial.

Lemma 8.4. Given PSD matrices A1, . . . , An ∈ Rd×d and a symmetric matrix B ∈ Rd×d, the polynomial

p(z) = det

(
B +

n∑
i=1

ziAi

)

is real stable.

We don’t prove this lemma here, but instead explain two applications:

Uniform Spanning Trees Given a graph G = (V,E) the generating polynomial of all spanning trees of G
is SR, this is because

gµ({ze}e∈E) =
∑

T spanning tree

zT = det(
1

n
11T +

∑
e∈E

zeLe),

where Le is the Laplacian of edge e is a PSD matrix. This identity is called the matrix tree theorem that
we don’t prove here.

k-DPPs Given n vectors v1, . . . , vn ∈ Rd, consider the distribution over S ∈
(
n
k

)
where the P [S] =

det(
∑

i∈S viv
T
i ), a.k.a., the volume of the parallelepiped defined by vectors in S. This distribution has

an abundance of applications in ML in addressing diversity and it is SR.

8.3 Negative Correlation Property of SR distributions

Theorem 8.5. A multilinear polynomial p ∈ R[z1, . . . , zn] is real stable iff for any i, j

∂zip(x) · ∂zjp(x) ≥ p(x) · ∂zi∂zjp(x), (8.1)

where x ∈ Rn.

In the previous lecture, we observed that if µ is negatively correlated, then gµ satisfies (8.1) for x = 1. A
probability distribution is called Rayleigh if it satisfies (8.1) for all x ≥ 0. The notion of Rayleigh distributions
was first introduced by Wagner [Wag06] with the purpose of generalizing the Rayleigh monotonicity law
for effective resistances in graphs (we will see this later in the course). If (8.1) holds for all x ≥ 0, then it
implies that all conditional distributions of µ are negatively correlated.
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Proof. We only prove ⇒: Assume p is real stable, and let x ∈ Rn. First, note that for any a > 0 and
b ∈ R, by closure properties of real stable polynomials, p(at+ b, z2, . . . , zn) is real stable. Then the bivariate
restriction

g(s, t) = p(x1, . . . , xi−1, s+ xi, . . . , xj−1, t+ xj , xj+1, . . . , xn)

is real stable. Since p is multilinear, g is multilinear and it can be writen as

g(s, t) = a+ bs+ ct+ dst,

where a = p(x), b = ∂zip(x), c = ∂zjp(x) and d = ∂zi∂zjp(x). So, to finish the proof it is enough to show
that bc ≥ ad. This is shown in the next lemma. Therefore, (8.1)

Lemma 8.6. Let p ∈ R[z1, z2] = a+ bz1 + cz2 + dz1z2 be a real stable polynomial. Prove that bc ≥ ad.

Proof. If d = 0 we are done since the polynomial is degree 1 so b, c have the same sign. Otherwise we know
that p(t−c/d, t−b/d) is real rooted. But this polynomial is equal to a− bc

d +dt2. Therefore the discriminant

gives 0 ≥ 4(a− bc
d )d, or equivalently bc ≥ ad proving the claim.

So, we immediately get any sum
∑

i∈S Xi is strongly concentrated.

8.4 Negative Association Property of SR Distributions

First, notice that unlike, positive association, we cannot hope to prove that any two increasing functions are
negatively associated. This is simply because any increasing function f is positively correlated with itself.
So, instead we want the functions to be supported on disjoint coordinates:

Definition 8.7. A probability distribution µ : 2[n] → R≥0 is negatively associated if any two increasing
functions f, g : 2[n] → R≥0 that depend on disjoint set of coordinates are negatively correlated; namely if f
is a function of S ⊆ [n] and g is a function of T ⊆ [n] such that S ∩ T = ∅ then,

E [f ]E [g] ≥ E [fg] .

Feder and Mihail [FM92] proved the following theorem:

Theorem 8.8. Let S be a class of probability distributions satisfying:

1) Each µ ∈ S is a measure on 2E, where for some E ⊆ {1, 2, . . . , n};

2) S is closed under conditioning, i.e., for any µ ∈ S, µ|i, µ|i ∈ S.

3) For each µ ∈ S is pairwise negatively correlated.

4) Each µ ∈ S has a homogeneous generating polynomial.

Then all measures in S are negatively associated.

We don’t prove this theorem here. Instead, we use to prove that Strongly Rayleigh distributions are negatively
associated.

Theorem 8.9 (Borcea-Brändén-Liggett [BBL08]). Any strongly Rayleigh distribution is negatively associ-
ated.

https://www.wolframalpha.com/input/?i=a%2Bb%28t-c%2Fd%29+%2B+c%28t-b%2Fd%29+%2B+d%28t-c%2Fd%29%28t-b%2Fd%29
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Proof. We sketch the main idea: First we prove that homogeneous SR distributions are negatively associated.
This is simply because they are pairwise negatively correlated, and closed under conditioning.

If the given distribution is not homogeneous, there is a generic way to homogenize it while preserving SR
property by adding some dummy variables. Then we apply the argument from the previous paragraph.

For a concrete example, say f(T ) is the indicator that the induced graph of a set T ⊆ E on a set S ⊆ V
is connected, namely, T ∩ E(S) is connected. For any edge e /∈ E(S) let g(T ) = I [e ∈ T ]. Then, f, g are
negatively correlated.

To this date we know many other properties of SR distributions that we don’t discuss here such as stochastic
dominance, stochastic covering property, and concentration of Lipshitz functions.
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