
CSE 525: Randomized Algorithms Spring 2023

Lecture 6: Algorithmic Lovász Local Lemma
Lecturer: Shayan Oveis Gharan 04/13/2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Given underlying independent random variables Z1, . . . , Zm with product measure µ. The ”bad events”
A1, . . . ,An are each determined by a certain subset of the random variables, which we de- note var(Ai) ⊆ [n].
The dependency graph G has vertices [n] and edges (i, j) ∈ E(G) whenever var(Ai) ∩ var(Aj) ̸= ∅. Note
that this is a valid choice of a dependency graph, since each event Ai is independent of any conditioning
on the variables outside of var(Ai).

Given that the conditions of the Lovász Local Lemma hold, we want to find a realization of the random
variables Z1, . . . , Zm such that no events Ai happen.

Moser Tardos’s Algorithm

1. Sample Z1, Z2, . . . , Zm from the distribution µ.

2. As long as any event Ai is satisfied by the current values of Z1, . . . , Zm, choose the smallest such i and
resample var(Ai): replace (Za : a ∈ var(Ai)) by new independent samples.

It is clear that if the algorithm terminates, then we have found an assignment avoiding all events. The key
is to analyze the expected number of resampling steps. By one resampling step, we mean the operation of
resampling all the variables of an event.

Theorem 6.1 (Moser-Tardos [MT10]). The expected number of resampling steps before termination of the
algorithm is at most

∑n
i=1

xi

1−xi
, provided that P [Ai] ≤ xi

∏
j∈Γ(i)(1− xj), where as usual Γ(i) are the set of

neighbors of i in the dependency graph.

In these notes we also use Γ+(i) := Γ(i) ∪ {i} to denote the set of neighbors of i and including i itself.

Note that in applications, xi’s are usually small (xi ≤ 1/2), so this means the expected number of resampling
operations is O(n).

6.1 Execution Log and Stable Set Sequences

We define the execution log of the algorithm as the sequence of events that get resampled: (A(1)
i1

,A(2)
i2

, . . . ),

where A(t)
i denotes the fact that the event Ai was resampled at time t. We want to prove that for all i ∈ [n]

E [the number of times Ai gets resampled] ≤ xi

1− xi
.

Stable set sequences An important notion in the analysis will be that of stable set sequences. First,

given the log, we define a directed graph R on vertices A(s)
i as follows. For each pair of entries in the log,

A(s)
i and A(s′)

i′ , we add a directed edge (A(s)
i ,A(s′)

i′ ) to R if s < s′ and (Ai,Ai′) ∈ E(G).

6-1



6-2 Lecture 6: Algorithmic Lovász Local Lemma

For a fixed entry A(t)
i in the log, let us consider a subgraph R(t) ⊆ R, induced by the vertices that have a

directed path to A(t)
i . We call A(t)

i the root of R(t). For each ℓ ≥ 0, we define a set of events:

Iℓ = {j : ∃A(s)
j ∈ V (R(t)), the longest path from A(s)

j to the root A(t)
i has length exactly ℓ}.

Note that I0 = A(s)
j . We have the following properties:

i) For every ℓ ≥ 0, Iℓ is an independent set in G.

Proof: If j, j′ ∈ I and (j, j′) ∈ E(G), then there must be a directed edge (A(s)
j ,A(s′)

j′ ) ∈ R(t) (we

assume wlog that s < s′). This means that A(s)
j has a path to the root through A(s′)

j′ that has length

1 more than the longest path from A(s′)
j′ to the root. This contradicts the fact that the longest paths

from both nodes to the root have length exactly ℓ.

ii) For every ℓ ≥ 0, Iℓ+1 ⊆ Γ+(Iℓ).

Proof: For every j ∈ Iℓ+1, there is a longest directed path from A(s)
j to the root of length exactly ℓ+1.

So the next vertex on the path must have a longest path to the root of length ℓ. This vertex corresponds
to an event Aj′ ∈ Iℓ and by construction of the directed graph, we have that j ∈ Γ+(Aj′).

This motivates the following definition.

Definition 6.2. A stable set sequence for G is a finite sequence of sets I = (I0, I1, . . . , Ir) such that for
every 0 ≤ ℓ ≤ r, Iℓ is an independent set in G and for every 0 ≤ ℓ < r, Iℓ+1 ⊆ Γ+(Iℓ).

By the discussion above, every sequence I = (I0, I1, . . . , Ir) produced from a log of execution of the algorithm

is a stable set sequence (note that it must be finite, since for a fixed root A(t)
i the induced subgraph R(t) is

finite).

Definition 6.3. A stable set sequence I is said to be a witness of a resampling A(t)
i if it is produced from

the log by the above process, starting from root A(t)
i . We say that I occurs in the execution log if there is t

such that I is a witness of the resampling A(t)
i .

Lemma 6.4. For every stable set sequence I = {I0, I1, . . . , Ir},

P [I occurs in the log] ≤
r∏

ℓ=0

∏
i∈Iℓ

pi

where pi = P [Ai].

Proof. We first modify the algorithm as follows (which does not change its behavior). We prepare an
infinite table of samples to be used: For each Za, the a-th row of the table contains an infinite sequence
Za1

, Za2
, Za3

, . . . , each sampled independently according to the distribution of Za. The algorithm maintains
a pointer π(a) for each a ∈ [m]. We start with π(a) = 1 for each a ∈ [m]. The ”current values” of Za are

given by Z
π(a)
a . Whenever the algorithm ”resamples” Za , we increment π(a) by 1, which means moving on

to the next sample. Clearly, this is equivalent to the original description of the algorithm.

We claim that if a certain stable set sequence I occurs in the execution log, then for each of its events we
can determine a particular set of samples in the table that must satisfy the event. Given I = (I0, I1, . . . ),
we obtain the locations of these samples as follows: For every a ∈ var(Aj) where j ∈ Iℓ, let na,ℓ denote the



Lecture 6: Algorithmic Lovász Local Lemma 6-3

number of indices ℓ′ ≥ ℓ such that j′ ∈ Iℓ′ and a ∈ var(Aj′). (Note that for each ℓ′, at most one event in Iℓ′

can depend on Za, since Iℓ′ is an independent set.)

Then, we claim that (Z
n(a,ℓ)
a : a ∈ var(Aj)) are exactly the samples of Z that were checked by the algorithm

to determine that Aj occurs, before the resampling that makes Aj a member of Iℓ. This is because the only
times when π(a) is incremented is when we resample an event depending on Za. If Aj ∈ Iℓ and this is due
to a resampling at time s, then any event resampled before time s that also depends on Za will be part
of the directed graph R(s) and hence also part of the stable set sequence. These are the only times when

the pointer π(a) is incremented prior to the resampling A(s)
j and hence the value of π(a) just before this

resampling is exactly n(a, ℓ).

Now we know that in order for I = (I0, I1, . . . , Ir) to occur, it must be the case that for each 0 ≤ ℓ ≤ r and

for each event Aj ∈ Iℓ, the samples (Z
n(a,ℓ)
a : a ∈ var(Aj)) satisfy the event Aj . (Otherwise the algorithm

would not choose to resample it.) This happens with probability P [Aj ]. Most importantly, notice that the

samples Z
n(a,ℓ)
a for different values of ℓ are distinct; this follows directly from the definition of n(a, ℓ). By

the independence of the samples in the table, the probability that for each Aj ∈ Iℓ, 0 ≤ ℓ ≤ r, the samples

(Z
n(a,l)
a : a ∈ var(Aj)) satisfy Aj , is

∏r
s=0

∏
j∈Is

pj .

6.2 Summing Up

Now for each event Ai, define the random variable Ni to be the number of times event Ai is resampled
during the execution. Our goal is to compute the expectation E [Ni]. The sum of these expectations will
be the expected running time of the algorithm. Note that Ni is the number of distinct stable set sequences
with I0 = {Ai} in a execution of the algorithm (We remark that although the stable sets are distinct, each
one is properly included in the later ones.)

E [Ni] =
∑

I=(I0,... ),I0={Ai}

P [I occurs in the log] ≤
∑

I=(I0,... ),I0=Ai

r∏
ℓ=0

pIℓ

where for simplicity we write pIℓ =
∏

i∈Iℓ
pi. We need to show that E [Ni] ≤ xi

1−xi
.

We prove a more general fact:

Lemma 6.5. For any t ≥ 1, and any non-empty independent set J ∈ G, we have

∑
I=(I0,I1,...,It):I0=J

t∏
s=0

pIs ≤
∏
i∈J

xi

1− xi

Proof. We prove by induction. We leave the base case as an exercise.



6-4 Lecture 6: Algorithmic Lovász Local Lemma

Going over all possibilities for I1 based on the definition of a stable set sequence we can write,

∑
I=(I0,I1,...,It),I0=J

t∏
s=0

pIs = pJ
∑

K⊆Γ+(J),
K indep in G

∑
I=(I0,...,It−1),I0=k

t−1∏
s=0

pIs

≤
by IH

pJ
∑

K⊆Γ+(J),
K indep in G

∏
k∈K

xk

1− xk

≤
Assumption of Theorem 6.1

∏
i∈J

xi

∏
j∈Γi

(1− xj)
∑

K⊆Γ+(J),
K indep in G

∏
k∈K

xk

1− xk

=
∏
i∈J

xi

1− xi

∏
j∈Γ+

i

(1− xj)
∑

K⊆Γ+(J),
K indep in G

∏
k∈K

xk

1− xk

≤
∏
i∈J

xi

1− xi

∑
K⊆Γ+(J),

K indep in G

∏
k∈K

xk

∏
k∈Γ+(J)∖K

(1− xk)

≤
Drop the constraint that K is indep

∏
i∈J

xi

1− xi

∑
K⊆Γ+(J)

xK(1− x)Γ
+(J)∖K =

∏
i∈J

xi

1− xi
.

To see the last identity, observe that

1 =
∏

k∈Γ+(J)

(xk + 1− xk) =
∑

K⊆Γ+(J)

xK(1− x)Γ
+(J)∖K

This completes the proof of the lemma.

Note that we can take a limit t → ∞ to show that indeed E [Ni] ≤ xi

1−xi
.

Finally, to prove Theorem 6.1, it is enough to use linearity of expectations together with the above lemma
to show that ∑

i

E [Ni] ≤
∑
i

xi

1− xi

as desired.


	Execution Log and Stable Set Sequences
	Summing Up

