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We have seen how knowledge of the variance of a random variable X can be used to control deviation of
X from its mean. This is the heart of the second moment method. But often we can control even higher
moments, and this allows us to obtain much stronger concentration properties. A prototypical example is
when X1, X2, . . . , Xn is a family of independent (but not necessarily identically distributed) {0, 1} random
variables and X = X1 +X2 + · · ·+Xn. Let pi = E [Xi] and define µ = E [X] =

!n
i=1 p1 + p2 + · · ·+ pn. In

that case, we have the following multiplicative form of the ”Chernoff bound”.

Theorem 6.1 (Multiplicative Chernoff bound). . For every δ ≥ 0, it holds that

P [X ≥ (1 + δ)µ] ≤
"

eδ

(1 + δ)1+δ

#µ

.

and

P [X < (1− δµ] ≤
"

e−δ

(1− δ)1−δ

#µ

Consequently,

P [X ≥ (1 + δ)µ] ≤ e−δ2µ/(2+δ,P [X ≤ (1− δ)µ] ≤ e−δ2µ/2

Proof. Let t be a parameter that we choose later.

P [X ≥ (1 + δ)µ] = P
$
etX ≥ et(1+δ)µ

%
≤

Markov’s Inequality

E
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'

et(1+δ)µ
. (6.1)

The first inequality uses that the exponential function is a monotone function.

Now, we can write
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Now, observe that

E
&
etX

'
= pie

t + (1− pi) = 1 + pi(e
t − 1) ≤

1+x≤ex
epi(1−et)

Plugging this back we obtain

E
&
etX

'
≤

n)

i=1

epi(e
t−1) = eµ(1−et)

Putting back in (6.1), we obtain

P [X ≥ (1 + δ)µ] ≤ eµ(e
t−1)

et(1+δ)µ
= eµ(e

t−1−(1+δ)t) =
set t=ln(1+δ)

"
eδ

(1 + δ)1+δ

#µ

The other case can be proven similarly.
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6.1 Congestion Minimization Problem

A classical technique in the field of approximation algorithms is to write down a linear programming re-
laxation of a combinatorial problem. The linear program (LP) is then solved in polynomial time, and one
rounds the fractional solution to an integral solution that is, hopefully, not too much worse than the optimal
solution.

A classical example goes back to Raghavan and Thompson [RT87]. Let G = (V,A) be a directed network,
and suppose that we are given a sequence of terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk) where {si}, {ti} ⊆ V .
The goal is to choose, for every i, a directed si-ti path Pi in G so as to minimize the maximum congestion
of an arc e ∈ A:

OPT = min{max
e∈A

#{i : e ∈ Pi}}

This problem is NP-hard. Our goal will be to design an approximation algorithm that outputs a solution
so that the congestion of every edge is at most α ·OPT , for α as small as possible. The number α is called
the approximation factor of our algorithm. We will see that for this problem we will be able to achieve
α = O( logn

log logn ).

We start by writing a linear programming relaxation for this problem. Let Pi be the set of (directed) paths
from si to ti and let P = ∪iPi. For every path P , we have a variable xP to denote the amount of flow that
we route along P .

min t

s.t.
+

P∈Pi

yP = 1 ∀1 ≤ i ≤ k

+

P∈P:e∈P

yP ≤ t ∀e ∈ A

yP ≥ 0 ∀P

(6.2)

A few observations are in order:

• OPT (LP ) ≤ OPT . This is simply because the optimum solution is a feasible solution in the above
program. Note that the optimum solution satisfies all of the above constraints with the additional
property that yP ∈ {0, 1} for all paths P .

• Although the above program has exponentially many variable one for every directed path connecting
si → ti (for all i), its optimum solution can be computed in polynomial time. To do that we need two
observations:

i) We can write a linear program to find a flow of value 1 from si to ti. We have a variable f
(i)
e to

denote the flow of every edge.

+

si→e

f (i)
e = 1

+

e→v

f (i)
e =

+

v→e

f (i)
e ∀v ∕= si, ti

f (i)
e ≥ 0 ∀e.

Having that, the congestion of e due to the flow routed between the i-th pair is f
(i)
e ; so the total

congestion of e is
!

i f
(i)
e .

ii) A (fractional) flow (of value 1) from si to ti can be decomposed into a distribution of paths from

si to ti. To see that, given the solution {f (i)
e }e∈A, greedily find a path P from si to ti on edges
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with positive flow; let yP be mine∈P f
(i)
e . Then, subtract yP from the flow of all edges along P .

We will obtain a new flow of value 1− yP from si to ti. So we repeat this procedure until we get
the 0 flow.

6.2 Independent Rounding

Given a solution y to (6.2), we want to round it to an integral solution. Namely, we want to choose exactly
one path from each Pi such that the union of the chosen paths have small congestion, at most αOPT .

We follow the independent rounding method. Recall that, by feasiblity of y, for every 1 ≤ i ≤ k, we know
that

!
P∈Pi

yP = 1. So, we can think of {yP }P∈Pi as providing a probability distribution over si-ti paths.
For every i, independently, we choose one of the paths P ∈ Pi with probability yP . This procedure, by
definition, gives a feasible set of directed paths from si to ti for all i. So, it remains to bound the maximum
congestion. We prove the following theorem.

Theorem 6.2. With probability at least 1−1/n the above algorithm produces a integral set of paths connecting
all terminals with maximum congest at most

C
log n

log log n
OPT

Let YP be the indicator random variable that P is chosen. For an edge e, let Xe be the random variable
that is the congestion of edge e. So,

Xe =
+

P∈P:e∈P

YP .

By linearity of expectations,

E [Xe] =
+

P∈P:e∈P

yP ≤ OPT (LP ).

So, the expectations are small. We just need to use a Chernoff bound/union bound argument. Unfortunately,
the random variables YP are not independent. So, we need to use a slightly different random variables that
are truly independent.

The idea is to note that we always have exactly one path from si to ti. So, let Ye,i be the indicator
random variable that the unique path from si to ti uses edge e. So, Xe =

!
i Ye,i. It follows that Ye,i’s

are independent. Let β = (1 + δ) OPT
OPT (LP ) , and note that β > 1 since OPT ≥ OPT (LP ). So, by Chernoff

bound,

P [Xe ≥ (1 + δ)OPT ] = P [Xe ≥ β ·OPT (LP )] ≤
"
eβ

ββ

#OPT (LP )

≤
"

e1+δ

(1 + δ)1+δ

#OPT

≤
"

e1+δ

(1 + δ)1+δ

#

where in the last inequality we simply use that OPT ≥ 1. Now, to get the strong concentration bound we
need to choose δ large enough such that the RHS is at most n−3. It turns out that for that purpose it is
enough to let 1 + δ = C logn

log logn for a large enough constant C > 1.

Since, G has at most n2 edges, |A| ≤ n2, by union bound

P [∃e : Xe ≥ (1 + δ)OPT ] ≤ n2 · n−3 ≤ 1

n
.

So, the algorithm succeeds with probability at least 1− 1/n.
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6.3 Future Works and Open Problems

Chuzhoy, Guruswami, Khanna and Talwar showed that min-congestion problem is NP-hard to approximate
within any factor better than logn

log logn when the underlying graph is directed. Note that the same algorithm

that we discussed here works if the underlying graph is undirected (we can just put two copies of every edge
one in every direction). However, for undirected, the result of Raghavan-Thompson is still the best known
approximation factor. The best hardness result is log log n by Andrews-Zhang. It is a fundamental open
problem in the field of network routing to beat the Raghavan-Thompson’s classical algorithm.

https://homes.cs.washington.edu/~jrl/teaching/cse525sp19/notes/stoc07_diredpwc.pdf

