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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Consider a positive integer n and p € [0,1]. Perhaps the simplest model of random (undirected) graphs is
Gpp- To sample a graph from G, ;,, we add every edge {u,v} (for v # v and u,v € {1,...,n}) independently
with probability p.

For example, if X denotes the number of edges in a G}, ;, random graph, then we have

E[X] = (;) p.

A 4-clique in a graph is a set of four nodes such that all (;1) = 6 possible edges between the nodes are present.
Let G be a random graph sampled according to G, ,, and let C4 denote the event that G contains a 4-clique.
It will turn out that if p > n=2/3, then G contains a 4-clique with probability close to 1, while if p < n~=2/3,
then P [C4] will be close to 0. Thus p = n~2/3 is a “threshold” for the appearance of a 4-clique.

Remark 2.1. Here we use the asymptotic notation f(n) > g(n) to denote that lim,_, f(n)/g(n) — oco.
Similarly, we write f(n) < g(n) to denote that lim, . f(n)/g(n) — 0.

We can use a simple first moment calculation for one side of our desired threshold behavior.

Lemma 2.2. If p < n~%/3 then P[C4] — 0 as n — oo.

Proof. Let X denote the number of 4-cliques in G ~ Gy, ,. We can write X =) ¢ Xg where the set S runs
over all (Z) subsets of four vertices in G, and Xg be the indicator random variable that there is a 4-clique
on S. We have P[Xg = 1] = p% since all 6 edges must be present and are independent, thus by linearity of
expectation E[X] = p% - (}). Soif p < n~=2/3, then E[X] — 0 as n — oo. But now Markov’s inequality
implies that

P[C,) =P[X >1] <E[X] — 0.
O

On the other hand, proving that p > n=2/3 = P[C4] — 1 is more delicate. Even though a first moment
calculation implies that, in this case, E[X]| — oo, this is not enough to conclude that P[C4] — 1. For
instance, it could be the case that with probability 1 — 7712’ we have no 4-cliques, but we see all (Z) many
4-cliques otherwise. In that case, E[X] = ©(n?), but still the probability of seeing a 4-clique would be n%
In other words, if the only thing we know about the random variable X is its expectation we cannot say it

is non-zero with high probability. We need to know higher order moments of X.

2.1 Chebyshev’s Inequality

Definition 2.3 (Variance). The variance of a random variable X is defined as

Var(X) =E[(X - EX)?] =E[X?] - E[X]?
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Theorem 2.4 (Chebyshev’s Inequality). For any random variable X,

Var(X)

PX ~EX|>d <

In the probabilistic method, the following statement is very handy.

Corollary 2.5. For any random variable X,

Proof. Let e = EX in the Chebyshev’s inequality. Then,

. Var(X)
PX =0 <P[|X -EX|>EX] < W

Lemma 2.6. If X is a non-negative random variable, then

2
P[X>0]>m.

Proof. We use the Cauchy-Schwartz inequality: For any two random variables X,Y we can write

E[X Y] < VE[X?  VE[V?.

Having this we write,

E[X] = E[X1x50] < VE[X?]VE[1x>0] = VE[X?V/P[X > 0].

For random variables X, Y let
Cov(X,Y)=E[XY]-E[X]E[Y].

In particular, if X,Y is independent, then Cov(X,Y) = E[XY].

Fact 2.7. If X = X1 + - + X,,, then

Var(X) = ZVar(Xi) + Z Cov(X;, X;).
i i#]

In particular, if all X;’s are independent then Var(X) = >, Var(X;).

Proof. First, observe
2
Var(X) =E()_ X;)* - (IE > XZ->

Expanding the terms and combining the terms corresponding to X;, X; gives the desired identity. O

Lemma 2.8. If p>>n~%/3, then P[C4] — 1 as n — 0.



Lecture 2: Second Moment Method 2-3

Proof. Let Xg be the indicator random variable of having a clique on S and X = > ¢ Xg as before. Using
Corollary 2.5,

Var(X)

(EX)?

P[Cy) =P[X >0/ >1—
our goal is to show that Var(X) < (EX)2.
First, notice that for any S,
Var(Xg) = E[Xg] — (E[Xs])? < E[Xg] = p°.

So, > g Var(Xg) < (%)p°.

Now, fix two sets S, T € (Z) Obviously if |SNT| < 1, then S,T do not share any ”potential” edges. So, by
independence of edges P [XsX7] = P[Xs|P[Xr] = p'2.

On the other hand, if |[SNT| = 2. Then,
P[XsX7] =P[Xg|P[Xr|Xs] = p°P[X7|Xs] = p'l.

The last identity is because since Xg occurs we know that there is an edge in the common pair. So, we only
need 5 more edges to get Xr. Similarly, if |[S N T| = 3, then P[XsX7] = p°. In summary,

P[Xs|P[X7] if|SNT|<1
P[XsX7] = { p! if |SNT| =2
»° if |S N T = 3.

It follows that

ZCOV(Xs,XT Z Z Cov(Xgs, XT) + Z Cov(Xg, XT)

S#T s \T:Tns|=2 T:|TNS|=3
n—4
:Z< ( ) 11—p12)+4( ) )(pg—p”))
s
n 2 11 9
< <4> (3n“p** 4 4np”)

Lastly,

(D)p® + (4)Bn®p't +3np%)) 1+ 3n%p° + 4np®
((3)r°)? B (1)

Observe that for p > n~2/3 the ratio goes to infinity as n — oo and p — co (at a slower rate). O

B Var(X)
PX =0 < EX)?

<
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