
CSE 521: Design and Analysis of Algorithms I Fall 2021

Lecture 2: Second Moment Method
Lecturer: Shayan Oveis Gharan 10/04/2022 Scribe:

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Consider a positive integer n and p ∈ [0, 1]. Perhaps the simplest model of random (undirected) graphs is
Gn,p. To sample a graph from Gn,p, we add every edge {u, v} (for u ̸= v and u, v ∈ {1, . . . , n}) independently
with probability p.

For example, if X denotes the number of edges in a Gn,p random graph, then we have

E [X] =

(
n

2

)
· p.

A 4-clique in a graph is a set of four nodes such that all
(
4
2

)
= 6 possible edges between the nodes are present.

Let G be a random graph sampled according to Gn,p, and let C4 denote the event that G contains a 4-clique.
It will turn out that if p ≫ n−2/3, then G contains a 4-clique with probability close to 1, while if p ≪ n−2/3,
then P [C4] will be close to 0. Thus p = n−2/3 is a “threshold” for the appearance of a 4-clique.

Remark 2.1. Here we use the asymptotic notation f(n) ≫ g(n) to denote that limn→∞ f(n)/g(n) → ∞.
Similarly, we write f(n) ≪ g(n) to denote that limn→∞ f(n)/g(n) → 0.

We can use a simple first moment calculation for one side of our desired threshold behavior.

Lemma 2.2. If p ≪ n−2/3 then P [C4] → 0 as n → ∞.

Proof. Let X denote the number of 4-cliques in G ∼ Gn,p. We can write X =
∑

S XS where the set S runs
over all

(
n
4

)
subsets of four vertices in G, and XS be the indicator random variable that there is a 4-clique

on S. We have P [XS = 1] = p6 since all 6 edges must be present and are independent, thus by linearity of
expectation E [X] = p6 ·

(
n
4

)
. So if p ≪ n−2/3, then E [X] → 0 as n → ∞. But now Markov’s inequality

implies that
P [C4] = P [X ≥ 1] ≤ E [X] → 0.

On the other hand, proving that p ≫ n−2/3 ⇒ P [C4] → 1 is more delicate. Even though a first moment
calculation implies that, in this case, E [X] → ∞, this is not enough to conclude that P [C4] → 1. For
instance, it could be the case that with probability 1 − 1

n2 , we have no 4-cliques, but we see all
(
n
4

)
many

4-cliques otherwise. In that case, E [X] = Θ(n2), but still the probability of seeing a 4-clique would be 1
n2

In other words, if the only thing we know about the random variable X is its expectation we cannot say it
is non-zero with high probability. We need to know higher order moments of X.

2.1 Chebyshev’s Inequality

Definition 2.3 (Variance). The variance of a random variable X is defined as

Var(X) = E
[
(X − EX)2

]
= E

[
X2
]
− E [X]
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Theorem 2.4 (Chebyshev’s Inequality). For any random variable X,

P [|X − EX| > ϵ] <
Var(X)

ϵ2

In the probabilistic method, the following statement is very handy.

Corollary 2.5. For any random variable X,

P [X = 0] ≤ Var(X)

(EX)2

Proof. Let ϵ = EX in the Chebyshev’s inequality. Then,

P [X = 0] ≤ P [|X − EX| ≥ EX] ≤ Var(X)

(EX)2
.

Lemma 2.6. If X is a non-negative random variable, then

P [X > 0] ≥ (E [X])2

E [X2]
.

Proof. We use the Cauchy-Schwartz inequality: For any two random variables X,Y we can write

E [X · Y ] ≤
√

E [X2] ·
√

E [Y 2].

Having this we write,

E [X] = E [X1X>0] ≤
√

E [X2]
√

E [1X>0] =
√
E [X2]

√
P [X > 0].

For random variables X,Y let
Cov(X,Y ) = E [XY ]− E [X]E [Y ] .

In particular, if X,Y is independent, then Cov(X,Y ) = E [XY ].

Fact 2.7. If X = X1 + · · ·+Xn, then

Var(X) =
∑
i

Var(Xi) +
∑
i̸=j

Cov(Xi, Xj).

In particular, if all Xi’s are independent then Var(X) =
∑

i Var(Xi).

Proof. First, observe

Var(X) = E(
∑
i

Xi)
2 −

(
E
∑
i

Xi

)2

Expanding the terms and combining the terms corresponding to Xi, Xj gives the desired identity.

Lemma 2.8. If p ≫ n−2/3, then P [C4] → 1 as n → ∞.
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Proof. Let XS be the indicator random variable of having a clique on S and X =
∑

S XS as before. Using
Corollary 2.5,

P [C4] = P [X > 0] ≥ 1− Var(X)

(EX)2

our goal is to show that Var(X) ≪ (EX)2.

First, notice that for any S,

Var(XS) = E [XS ]− (E [XS ])
2 ≤ E [XS ] = p6.

So,
∑

S Var(XS) ≤
(
n
4

)
p6.

Now, fix two sets S, T ∈
(
n
4

)
. Obviously if |S ∩ T | ≤ 1, then S, T do not share any ”potential” edges. So, by

independence of edges P [XSXT ] = P [XS ]P [XT ] = p12.

On the other hand, if |S ∩ T | = 2. Then,

P [XSXT ] = P [XS ]P [XT |XS ] = p6P [XT |XS ] = p11.

The last identity is because since XS occurs we know that there is an edge in the common pair. So, we only
need 5 more edges to get XT . Similarly, if |S ∩ T | = 3, then P [XSXT ] = p9. In summary,

P [XSXT ] =


P [XS ]P [XT ] if |S ∩ T | ≤ 1

p11 if |S ∩ T | = 2

p9 if |S ∩ T | = 3.

It follows that

∑
S ̸=T

Cov(XS , XT ) =
∑
S

 ∑
T :|T∩S|=2

Cov(XS , XT ) +
∑

T :|T∩S|=3

Cov(XS , XT )


=
∑
S

(
6

(
n− 4

2

)
(p11 − p12) + 4

(
n− 4

1

)
(p9 − p12)

)
≤
(
n

4

)
(3n2p11 + 4np9)

Lastly,

P [X = 0] ≤ Var(X)

(EX)2
≤
(
n
4

)
p6 +

(
n
4

)
(3n2p11 + 3np9))

(
(
n
4

)
p6)2

≤ 1 + 3n2p5 + 4np3(
n
4

)
p6

Observe that for p ≫ n−2/3 the ratio goes to infinity as n → ∞ and p → ∞ (at a slower rate).
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