Lecture 2: Second Moment Method

Lecturer: Shayan Oveis Gharan
10/04/2022
Scribe:

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Consider a positive integer n and $p \in[0,1]$. Perhaps the simplest model of random (undirected) graphs is $G_{n, p}$. To sample a graph from $G_{n, p}$, we add every edge $\{u, v\}$ (for $u \neq v$ and $u, v \in\{1, \ldots, n\}$) independently with probability p.

For example, if X denotes the number of edges in a $G_{n, p}$ random graph, then we have

$$
\mathbb{E}[X]=\binom{n}{2} \cdot p
$$

A 4-clique in a graph is a set of four nodes such that all $\binom{4}{2}=6$ possible edges between the nodes are present. Let G be a random graph sampled according to $G_{n, p}$, and let \mathcal{C}_{4} denote the event that G contains a 4-clique. It will turn out that if $p \gg n^{-2 / 3}$, then G contains a 4 -clique with probability close to 1 , while if $p \ll n^{-2 / 3}$, then $\mathbb{P}\left[\mathcal{C}_{4}\right]$ will be close to 0 . Thus $p=n^{-2 / 3}$ is a "threshold" for the appearance of a 4 -clique.

Remark 2.1. Here we use the asymptotic notation $f(n) \gg g(n)$ to denote that $\lim _{n \rightarrow \infty} f(n) / g(n) \rightarrow \infty$. Similarly, we write $f(n) \ll g(n)$ to denote that $\lim _{n \rightarrow \infty} f(n) / g(n) \rightarrow 0$.

We can use a simple first moment calculation for one side of our desired threshold behavior.
Lemma 2.2. If $p \ll n^{-2 / 3}$ then $\mathbb{P}\left[\mathcal{C}_{4}\right] \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let X denote the number of 4-cliques in $G \sim G_{n, p}$. We can write $X=\sum_{S} X_{S}$ where the set S runs over all $\binom{n}{4}$ subsets of four vertices in G, and X_{S} be the indicator random variable that there is a 4-clique on S . We have $\mathbb{P}\left[X_{S}=1\right]=p^{6}$ since all 6 edges must be present and are independent, thus by linearity of expectation $\mathbb{E}[X]=p^{6} \cdot\binom{n}{4}$. So if $p \ll n^{-2 / 3}$, then $\mathbb{E}[X] \rightarrow 0$ as $n \rightarrow \infty$. But now Markov's inequality implies that

$$
\mathbb{P}\left[\mathcal{C}_{4}\right]=\mathbb{P}[X \geq 1] \leq \mathbb{E}[X] \rightarrow 0
$$

On the other hand, proving that $p \gg n^{-2 / 3} \Rightarrow \mathbb{P}\left[\mathcal{C}_{4}\right] \rightarrow 1$ is more delicate. Even though a first moment calculation implies that, in this case, $\mathbb{E}[X] \rightarrow \infty$, this is not enough to conclude that $\mathbb{P}\left[\mathcal{C}_{4}\right] \rightarrow 1$. For instance, it could be the case that with probability $1-\frac{1}{n^{2}}$, we have no 4 -cliques, but we see all $\binom{n}{4}$ many 4-cliques otherwise. In that case, $\mathbb{E}[X]=\Theta\left(n^{2}\right)$, but still the probability of seeing a 4 -clique would be $\frac{1}{n^{2}}$ In other words, if the only thing we know about the random variable X is its expectation we cannot say it is non-zero with high probability. We need to know higher order moments of X.

2.1 Chebyshev's Inequality

Definition 2.3 (Variance). The variance of a random variable X is defined as

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Theorem 2.4 (Chebyshev's Inequality). For any random variable X,

$$
\mathbb{P}[|X-\mathbb{E} X|>\epsilon]<\frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

In the probabilistic method, the following statement is very handy.
Corollary 2.5. For any random variable X,

$$
\mathbb{P}[X=0] \leq \frac{\operatorname{Var}(X)}{(\mathbb{E} X)^{2}}
$$

Proof. Let $\epsilon=\mathbb{E} X$ in the Chebyshev's inequality. Then,

$$
\mathbb{P}[X=0] \leq \mathbb{P}[|X-\mathbb{E} X| \geq \mathbb{E} X] \leq \frac{\operatorname{Var}(X)}{(\mathbb{E} X)^{2}}
$$

Lemma 2.6. If X is a non-negative random variable, then

$$
\mathbb{P}[X>0] \geq \frac{(\mathbb{E}[X])^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

Proof. We use the Cauchy-Schwartz inequality: For any two random variables X, Y we can write

$$
\mathbb{E}[X \cdot Y] \leq \sqrt{\mathbb{E}\left[X^{2}\right]} \cdot \sqrt{\mathbb{E}\left[Y^{2}\right]}
$$

Having this we write,

$$
\mathbb{E}[X]=\mathbb{E}\left[X \mathbf{1}_{X>0}\right] \leq \sqrt{\mathbb{E}\left[X^{2}\right]} \sqrt{\mathbb{E}\left[\mathbf{1}_{X>0}\right]}=\sqrt{\mathbb{E}\left[X^{2}\right]} \sqrt{\mathbb{P}[X>0]}
$$

For random variables X, Y let

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

In particular, if X, Y is independent, then $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]$.
Fact 2.7. If $X=X_{1}+\cdots+X_{n}$, then

$$
\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

In particular, if all X_{i} 's are independent then $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right)$.

Proof. First, observe

$$
\operatorname{Var}(X)=\mathbb{E}\left(\sum_{i} X_{i}\right)^{2}-\left(\mathbb{E} \sum_{i} X_{i}\right)^{2}
$$

Expanding the terms and combining the terms corresponding to X_{i}, X_{j} gives the desired identity.
Lemma 2.8. If $p \gg n^{-2 / 3}$, then $\mathbb{P}\left[\mathcal{C}_{4}\right] \rightarrow 1$ as $n \rightarrow \infty$.

Proof. Let X_{S} be the indicator random variable of having a clique on S and $X=\sum_{S} X_{S}$ as before. Using Corollary 2.5,

$$
\mathbb{P}\left[\mathcal{C}_{4}\right]=\mathbb{P}[X>0] \geq 1-\frac{\operatorname{Var}(X)}{(\mathbb{E} X)^{2}}
$$

our goal is to show that $\operatorname{Var}(X) \ll(\mathbb{E} X)^{2}$.
First, notice that for any S,

$$
\operatorname{Var}\left(X_{S}\right)=\mathbb{E}\left[X_{S}\right]-\left(\mathbb{E}\left[X_{S}\right]\right)^{2} \leq \mathbb{E}\left[X_{S}\right]=p^{6}
$$

So, $\sum_{S} \operatorname{Var}\left(X_{S}\right) \leq\binom{ n}{4} p^{6}$.
Now, fix two sets $S, T \in\binom{n}{4}$. Obviously if $|S \cap T| \leq 1$, then S, T do not share any "potential" edges. So, by independence of edges $\mathbb{P}\left[X_{S} X_{T}\right]=\mathbb{P}\left[X_{S}\right] \mathbb{P}\left[X_{T}\right]=p^{12}$.

On the other hand, if $|S \cap T|=2$. Then,

$$
\mathbb{P}\left[X_{S} X_{T}\right]=\mathbb{P}\left[X_{S}\right] \mathbb{P}\left[X_{T} \mid X_{S}\right]=p^{6} \mathbb{P}\left[X_{T} \mid X_{S}\right]=p^{11}
$$

The last identity is because since X_{S} occurs we know that there is an edge in the common pair. So, we only need 5 more edges to get X_{T}. Similarly, if $|S \cap T|=3$, then $\mathbb{P}\left[X_{S} X_{T}\right]=p^{9}$. In summary,

$$
\mathbb{P}\left[X_{S} X_{T}\right]= \begin{cases}\mathbb{P}\left[X_{S}\right] \mathbb{P}\left[X_{T}\right] & \text { if }|S \cap T| \leq 1 \\ p^{11} & \text { if }|S \cap T|=2 \\ p^{9} & \text { if }|S \cap T|=3\end{cases}
$$

It follows that

$$
\begin{aligned}
\sum_{S \neq T} \operatorname{Cov}\left(X_{S}, X_{T}\right) & =\sum_{S}\left(\sum_{T:|T \cap S|=2} \operatorname{Cov}\left(X_{S}, X_{T}\right)+\sum_{T:|T \cap S|=3} \operatorname{Cov}\left(X_{S}, X_{T}\right)\right) \\
& =\sum_{S}\left(6\binom{n-4}{2}\left(p^{11}-p^{12}\right)+4\binom{n-4}{1}\left(p^{9}-p^{12}\right)\right) \\
& \leq\binom{ n}{4}\left(3 n^{2} p^{11}+4 n p^{9}\right)
\end{aligned}
$$

Lastly,

$$
\mathbb{P}[X=0] \leq \frac{\operatorname{Var}(X)}{(\mathbb{E} X)^{2}} \leq \frac{\left.\binom{n}{4} p^{6}+\binom{n}{4}\left(3 n^{2} p^{11}+3 n p^{9}\right)\right)}{\left(\binom{n}{4} p^{6}\right)^{2}} \leq \frac{1+3 n^{2} p^{5}+4 n p^{3}}{\binom{n}{4} p^{6}}
$$

Observe that for $p \gg n^{-2 / 3}$ the ratio goes to infinity as $n \rightarrow \infty$ and $p \rightarrow \infty$ (at a slower rate).

