
CSE 525: Randomized Algorithms Spring 2023

Lecture 19: Counting Matchings
Lecturer: Shayan Oveis Gharan May 30th

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we use the Path technology to generate a uniformly random matching in a graph G = (V,E).
We will prove the following theorem.

Theorem 19.1 ([?]). For any graph G = (V,E) and any λ > 0 there is an algorithm that runs in time
polynomial in |V |, |E|,λ and returns a an approximate sample of the distribution

π(M) =
1

Z
λ|M | (19.1)

where Z is the partition function of the distribution.

Note that for λ = 1 the algorithm generates a uniformly random matching in G. As λ gets bigger it gets more
likely to choose a (near) maximum matching of G. Before proving the above theorem we first give several
additional examples of the Path technology and we develop a general machinery to employ this method in
a generic application of Markov chains.

19.1 Path Technology for the hypercube

First, observe that the technique that we talked about in the last lecture naturally extends to fractional
multicommodity flows. Namely, If for each x, y ∈ Ω we use a distribution of paths µx,y to route π(x)π(y)

commodity from x to y then, the congestion of an edge e = (u, v) is defined as maxe
f(e)
Q(e) where as before,

Q(e) = π(u)K(u, v), and

f(e) =
!

x,y

!

P∼µx,y :e∈P

π(x)π(y)µx,y(P).

Recall that we showed that inverse of the Poincaré constant is at least maxP |Px,y| · maxe
f(e)
Q(e) . Next, we

bound the Poincaré constant of the hypercube.

Lemma 19.2. The inverse of the Poincaré constant of the lazy random walk on the hypercube {0, 1}n is
O(n2).

We will construct a routing that uses only shortest paths to route from x to y. So, since the diameter of
graph is n, it is enough to construct a routing such that the maximum congestion is O(n).

To minimize the congestion it is enough to spread the flow between x and y evenly among all shortest paths
from x to y. So, if x, y differ in k bits we consider the 2k shortest paths from x to y and we send π(x)π(y)/2k

from of mass along each of these paths.

Let N = 2n. Now, let us bound the congestion. By symmetry of the hypercube the congestion of all edges
are equal. Therefore, for any edge e∗,

f(e∗) =

"
e f(e)

|E| =
1

N2

"
x,y{length of the shortest path from x to y}

Nn/2
.

19-1

19-2 Lecture 19: Counting Matchings

It is not hard to see the average distance between two random vertices in the hypercube is n/2. Therefore,

f(e∗) =
1

N2 · n
2N

2

Nn/2
=

1

N
.

Therefore,
f(e∗)

Q(e∗)
=

1/N
1
N · 1

2n

= 2n.

It follows that 1
α ≤ O(n2) and

τmix ≤
log 1

π(x)

α
=

log 1
N

α
≤ O(n3).

Recall that using the coupling method we proved the the mixing time of the lazy random walk on a hypercube
is O(n lnn). So the above bound is two order of magnitude worse the right bound. Furthermore, observe
that the above bound is essentially the best possible using the path technology, because we equalized the
flow on all edges.

This example shows an inherent weakness of the path technology. In the above bound we lose a factor n in
bounding the Poincaré constant. In fact it can be shown that the Poincaré constant of the lazy chain on the
hypercube is 1/2n. As we will discuss in future. This loss is always at most logarithmic in |Ω| for the best
multicommodity flow. We lose another factor n because we only use the Poincaré constant in bounding the
mixing time. In this case, it turns out that one can use the rest of the eigenvalues of the Markov chain to
only incur a loss of lnn. Nonetheless, this loss is also always at most logarithmic in |Ω|.

Although the Path technology has above weaknesses compared the coupling technique, It is a more general
tool and it can be used in many cases that coupling technique fails completely. Although the above bound is
not tight, we proved a mixing time which is polynomial in log |Ω| using this technology. This is a remarkable
fact. For a concrete example, it was shown that no Markovian coupling argument can prove rapid mixing
of the Jerrum-Sinclair Markov chain, [?], for sampling almost uniformly from the set of perfect and near
perfect matchings of a given graph[?]. See below for the Jerrum-Sinclair chain.

19.2 Flow Encoding

The flow that we used for the hypercube example proved rapid mixing of the chain but we used several
symmetry property of the cube to analyze the maximum congestion of edges. These global symmetry
properties are very hard to prove for a generic Markov chain. Instead we would like a local property that if
satisfied it directly implies a bound on maximum congestion.

Let us run a though experiment. Say we are running a Markov chain with |Ω| = 2n states on a ground set of
n elements. Suppose that we are considering a uniform distribution over Ω. Then, assuming that each state

x has a polynomial in n neighborhood size, e.g., in the Metropolis chain, one would have Q(e) = poly(n)
|Ω| .

Therefore, in order to prove a poly(n) bound on the inverse Poincaré constant we need to show

f(e) ≤ poly(n)|Ω|,

for all edge e. Suppose in our multicommodity flow we use a single path Px,y for each pair x, y. It follows
that from |Ω|× |Ω| paths that we need to construct only poly(n)|Ω| of them can go through a fixed edge e,
so

| paths(e)| ≤ poly(n)|Ω|,

where paths(e) denotes the set of paths the go through e.

Lecture 19: Counting Matchings 19-3

To prove the above inequality we need to devise a “local” technique to compare | paths(e)| with the size of
Ω. The problem is |Ω| is usually the question of interest and it seems out of reach. The following machinery
of Jerrum and Sinclair, called injective mapping, is designed to relate these two quantities.

Definition 19.3 (Encoding). An encoding for a flow f (that uses only single paths Px,y for each x, y) is a
set of functions ηe : paths(e) → Ω (one for each edge e) such that

i) ηe is injective,

ii) For all e = (z, z′) and for all x, y where Px,y ∈ paths(e), we have

π(x)π(y) ≤ β · π(z)π(ηe(x, y)).

Note that property (ii) of Definition 19.3 is automatically satisfied when pi is the uniform distribution. So,
it is mainly used to charge the weights correctly when the underlying distribution is not uniform. Property
(i) is exactly the local property which relates | paths(e)| and |Ω|. Note that in some applications ηe may be
approximately injective. Meaning that we may use some additional O(log n) bits of information to invert ηe.
The following lemma is immediate:

Lemma 19.4. If there is an encoding for a flow f with parameter β, then

max
e

f(e)

Q(e)
≤ β max

u,v:K(u,v)>0

1

K(u, v)
.

Proof. Consider an arbitrary edge e = (u, v). Then,

f(e) =
!

x,y:Px,y paths(e)

π(x)π(y) ≤ βπ(u)
!

x,y:Px,y∈paths(e)

π(ηe(x, y)) ≤ βπ(u).

Here, the first inequality uses property (ii) and the second inequality uses property (i). Therefore,

f(e)

Q(e)
≤ βπ(u)

π(u)K(u, v)
=

β

K(u, v)
.

19.3 Flow Encoding for the Hypercube

Before discussing the application of flow encoding in counting matchings let us use it to bound the mixing
time of the lazy random walk on the hypercube. For any pair of states x, y, we use the “left-right bit-fixing
path”. That is we go from x to y by fixing the bits of x from left to right. Obviously, this follows a shortest
path from x to y. So the maximum length of the paths that we construct is n.

Now, let us bound the congestion. By Lemma 19.4 we need to define an encoding. Consider an arbitrary
edge e = (u, v) and suppose u and v different in the i-th bith. Now, consider a pair x, y where Px,y goes
through edge e. Observe that the first i− 1 bits of u (or v) must match y and the last n− i bits of u must
match x, i.e., we can write

u = y1y2 . . . yi−1xi, xi+1, . . . , xn, v = y1, . . . , yi−1, yi, xi+1, . . . , xn.

We define
ηe(x, y) = x1, . . . , xi, yi+1, . . . , yn.

19-4 Lecture 19: Counting Matchings

To prove that this is an encoding we need to show that ηe is injective. So, it is enough to show that we can
uniquely recover x, y from e and ηe(x, y). But this is true by construction. Note that since the stationary
distribution is uniform we have β = 1. It follows by Lemma 19.4 that the maximum congestion is at most

max
K(u,v)>0

1

K(u, v)
= 2n.

Therefore, the chain mixes in O(n3) steps.

Observe that we proved a bound almost similar to the bound in the proof of Lemma 19.2 (up to constants).
But, here we did not use any symmetry property of the cube and also we did not use any information on
|Ω|. Next, we use this idea to analyze a Markov chain on sampling matchings.

19.4 Counting Matchings

In this section we prove Theorem 19.1. We note that the problem of counting matchings in a given graph is
a #P-complete problem for any fixed λ > 0. We start by defining the Markov chain.

Markov Chain. Let Ω be the set of all matchings of G. We use the Metropolis rule on three set of actions:
Edge deletion, Edge addition, and Edge exchange. Given a matching M we use the following rules to choose
a neighbor of M .

• With probability 1/2 stay at M (This ensures laziness).

• Otherwise, we choose an edge e = (u, v) ∈ E uniformly at random and we do the following

Edge Addition: If none of the endpoints of e are saturated in M we go to M + e with probability
min{1,λ}.

Edge Deletion: If e ∈ M we delete M we go to M − e with probability min{1, 1/λ}.
Edge Exhange: If exactly one of the endpoints of e, say u are saturated in M , let e′ ∈ M be the

unique edge incident to u. We go to M − e′ + e.

Observe that this chain is obviously following the Metropolis rule. So it is reversible and the corresponding
stationary distribution is (19.1). Furthermore, it is not hard to see that the Markov chain is irreducible
because we can go from any matching M to the empty state and go to any arbitrary matching M ′.

Flow: Next, we define a flow for the above Markov chain. Consider any two matchings x, y. We want to
construct a unique path Px,y that moves x to y following the actions of the chain. Consider the graph x⊕ y,
that is the symmetric different of x, y. It follows that x⊕ y is a union of paths an even cycles. Let us color
the edges of x by red and the edges of y by blue. So, we want to construct a path to turn the red edges to
blue.

In order to construct Px,y first we define an ordering on all cycles and all paths of G. Note that there may be
exponentially many such objects but we need this ordering only for the sake of the analysis. Furthermore,
for every cycle and every path we define a vertex as the “start vertex”. We make sure that the start vertex
of a path is one of its two endpoints. Note that this global ordering also induces an ordering on cycles/paths
of x⊕ y. That is the ordering we use to construct Px,y.

To construct Px,y we process the paths and cycles in x ⊕ y in the order defined above. To process a path
with r edges e1, . . . , er and e1 being the edge with the first vertex we do the following

Lecture 19: Counting Matchings 19-5

1) If e1 is red, then remove e1, exchange e3 for e2, exchange e5 for e4, and so on. If er is blue, we have the
additional move of adding er at the end.

2) If e1 is blue, then exchange e2 for e1, exchange e4 for e3, and so on. If er is blue, we have the additional
move of adding er at the end.

For an even cycle with edges e1, . . . , e2r let e1 be the red edge incident to the start vertex. First, we delete
e1, and then we exchange e3 for e2, exchange e5 for e4 and so on. Finally, we will add e2r.

Encoding: Consider an edge e = (u, v) we need to define the injective mapping ηe(x, y). We simply define

ηe(x, y) = x⊕ y ⊕ (u ∪ v).

There is a fundamental reason for this definition. In particular, given ηe(x, y) and e = (u, v) we can
reconstruct x⊕ y simply as ηe(x, y)⊕ (u ∪ v) = x⊕ y. There is a little bit of technicality that we should be
aware of.

Firstly, note that u, v always differ in a single edge. The reason we xor x ⊕ y with (u ∪ v) as opposed to u
is to make sure that ηe(x, y) is a matching. It turns out that, with the above definition, ηe(x, y) is always
a matching except in the special case where we go through edge (u, v) when we are processing a cycle. In
that case we need to remove the first edge of the cycle, e1, to make sure that ηe(x, y) is a matching, i.e.,

ηe(x, y) = x⊕ y ⊕ (u ∪ v)− e1.

This modification of ηe may seem problematic because it seems impossible to recover e1 from ηe and u, v.
First of all, note that even if that was completely impossible it was not a big deal, because we could find e1
in our decoding step using O(log n) bit additional information. In other words, we could only guarantee that
ηe is approximately injective. Secondly, we know that if we are missing e1 it has to be an edge completing
the path we are processing at the moment into a cycle. So, in fact there are only two possibilities: Wether
the path that we are processing when going through (u, v) is a cycle or not.

Lastly, observe that once we have x⊕ y we can easily reconstruct x, y. By looking at u, v we can figure out
the path that we are processing at the moment. Then for every path that preceeds the current one, we know
that the path agrees with y in u and with x in ηt(x, y). For paths following the current one, the parity is
reversed.

Bounding the Mixing Time: First observe that in the above construction u ∪ ηe(x, y) has at most two
edges less than x ∪ y. Therefore,

π(x)π(y) ≤ λ2π(u)π(ηe(x, y)).

Therefore, we can let β = λ2 in Definition 19.3. In addition observe that for any edge u, v

K(u, v) ≥ 1

λ|E| .

Therefore, by Lemma 19.4, we have the maximum congestion is at most O(λ3|E|). Furthermore, observe
that the length of all paths that we construct is O(n) because both x, y have at most O(n) edges. Therefore,

τmix ≤ O(λ3|E|n log
1

π(x)
).

where x is the starting state. Now, if start the process from the maximum matching of G (if λ ≥ 1) and
from the empty set otherwise, we have that

π(x) ≥ 1

|Ω|

19-6 Lecture 19: Counting Matchings

Note that the number of matchings of size n is at most
#|E|

n

$
, and this term dominates the maximum possible

number of smaller size matchings. It follows that log(1
π(x)) ≤ O(n log n). Therefore, the chain mixes in

O(λ3|E|n2 log(n)).

References

