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18.1 Dirichlet Form

Consider a reversible Markov chain with Kernel K on state space Ω and stationary π. For two functions
f, g ∈ Ω → R define

〈f, g〉π =
!

x

f(x)g(x)π(x).

So, far we have discussed that for a probability distribution p on Ω, pTK is the distribution of the chain
after one step, i.e., if X0 ∼ p, then X1 ∼ pTK.

What happens if we multiply a vector with K on the right? In that case, K acts as an averaging operator:
For any y ∈ Ω,

Kf(x) =
!

y

K(x, y)f(y),

in other words, we sample a state y ∼ x according to K(x, .) and then we average f .

Fact 18.1. for any pair of functions f, g ∈ Ω → R,

〈Kf, g〉π = 〈f,Kg〉π.

Proof. We write

〈Kf, g〉π =
!

x

π(x)g(x)
!

y

K(x, y)f(y) =
reversibility

!

x

g(x)
!

y

K(y, x)π(y)f(y)

=
!

y

f(y)π(y)
!

x

P (y, x)g(x) = RHS.

So the Markov kernel K is self-adjoint w.r.t. the inner product 〈., .〉π. It follows that for any self-adjoint
operator w.r.t. an inner product one can apply the spectral theorem and obtain real eigenvalues λ1, . . . ,λn

with corresponding eigenvectors v1, . . . , vn such that 〈vi, vj〉π = 0 and ‖vi‖2π = 1 for all i, j.

18.2 Mixing Time via Spectral Gap

Definition 18.2 (Variance). For a function f : Ω → R define

Var(f) = 〈f − Ef, f − Ef〉π = 〈f, f〉π − 2Ef〈f,1〉π + (Ef)2 = 〈f, f〉π − (Ef)2
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where as usual we used ‖1‖ = 1 and Ef = 〈f,1〉π. Note that by definition Var(f) = Var(f + α1) for any
α ∈ R. Furthermore,

Var(K(f + α1)) = Var(Kf + α1) = Var(Kf).

Lemma 18.3. For any function f : V → R, Var(f)−Var(Kf) = 〈(I −K2)f, f〉π.

Proof. First, by definition of variance we can shift f and assume without loss of generality that Ef =
〈f,1〉π = 0. Also note that EKf = 〈1,Kf〉π = 0. Therefore,

Var(f)−Var(Kf) = 〈f, f〉π − 〈Kf,Kf〉π = 〈(I −K2)f, f〉π
The RHS is also known as the Dirichlet form of f with respect to K2. The operator I − K2 is called the
normalized Laplacian of K2.

Equivalently, the Dirichlet form can be written as

〈(I −K)f, f〉π =
!

x,y

π(x)K(x, y)(f(x)− f(y))2 ≥ 0

The above lemma in particular implies that Var(Kf) ≤ Var(f) for any function f : Ω → R.

Let

λ2(I −K2) = min
f

〈(I −K2)f, f〉π
Var(f)

The minimum is over all functions f that are orthogonal to the all ones vector, 〈f,1〉π = 0.

This quantity is the second smallest eigenvalue of I −K2 which can also be seen as difference of 1 and the
square of the second largest eigenvalue of K in absolute value. It is also called the Poincare constant. It
then follows that for any function f : Ω → R that is not the all-ones function,

Var(Kf)

Var(f)
= 1− 〈(I −K2)f, f

Var(f)
=

〈K2f, f〉
Var(f)

≤ λ2(K
2).

Applying this repeatedly, we get

Corollary 18.4. For any function f : V → R,

Var(Ktf) ≤ λ2(K
2)t Var(f).

Lemma 18.5. For any x ∈ Ω, and any ε > 0 the walk started at x satisfies:
!

y

|Kt(x, y)− π(y)| ≤ ε

as long as t ≥ log ε−1 lnπ(x)−1

1−λ2(K2) . In fact the same proof also bounds the L-2 mixing.

Proof. Let f = 1x/π(x), i.e., f(y) = 0 for y ∕= x and 1/π(x) otherwise. Note that Ef = 1.

For some t that we choose later we write

Var(K2tf) = 〈Ktf,Ktf〉π − (EKtf)2

= Ey∼πK
tf(y) ·Ktf(y)− 〈Ktf,1〉2

=
using f=1x/π(x)

Ey∼π

"
Kt(y, x)

π(x)

#2

− (Ef)2

=
using reversibility

Ey∼π

"
Kt(x, y)

π(y)

#2

− 1 = Ey∼π

"
Kt(x, y)

π(x)
− 1

#2
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The RHS is called the L-2 distance for the random walk started at x.

The L-2 distance is always greater than or equal to the total variation distance. That can be seen by an
application of the Cauchy-Schwarz inequality. In particular,

!

y

|Kt(x, y)− π(y)| = Ey∼π

$$$$
Kt(x, y)

π(y)
− 1

$$$$ ≤ Ey∼π

"
Kt(x, y)

π(y)
− 1

#2

= Var(K2tf) ≤
Corollary 18.4

λ2(K
2)t Var(f) ≤ λ2(K

2)t

π(x)
≤ ε

Where to get the last inequality it is enough to let t = ln ε−1 lnπ(i)−1

1−λ2(K2) .

Definition 18.6 (L-p mixing time). For a function f : Ω → R define,

‖f‖p,π :=

%
!

x∈Ω

π(x)f(x)p

&1/p

.

For a state x, the ℓp mixing time of the walk started at x is defined as

τx,p(ε) := min

'
t :

((((
Kt(x, .)

π
− 1

((((
p,π

≤ ε

)

In particular, for p = ∞, it is:

τx,∞(ε) := min

*
t : |K

t(x, y)

π(y)
− 1| ≤ ε, ∀y

+

Lemma 18.7. For any reversible chain,

max
x

τx,∞(ε) ≤ 2max
x

τx,2(
√
ε)

Proof. For any x, y,

K2t(x, y)

π(y)
=

!

z

Kt(x, z)

π(z)

Kt(z, y)

π(y)
π(z) =

reversibility

!

z

Kt(x, z)

π(z)

KT (y, z)

π(z)
π(z)

Therefore, ,
Kt(x, .)

π
− 1,

Kt(y, .)

π
− 1

-
=

K2t(x, y)

π(y)
− 1

It thus follows that,

max
x,y

$$$$
K2t(x, y)

π(y)
− 1

$$$$ ≤ max
x,y

,
Kt(x, .)

π
− 1,

Kt(y, .)

π
− 1

-
≤ max

x
‖K

t(x, .)

π
− 1‖22,π

The conclusion follows.

18.3 Path Technology

Next we discuss a new method to bound the Poincaré constant.
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Think of a multicommodity flow problem where we want to send π(x)π(y) unit of flow between each pair of
states x, y. Note that these are supposed to be disjoint commodities. This means that if a 1 unit x → y flow
goes on edge (u, v) from u to v and 1 unit of x′ → y′ flow goes on the same edge from v to u they don not
cancel out each other. The capacity of each edge e = (u, v) is Q(e) = π(u)K(u, v) = π(v)K(v, u). Recall
that Q(e) represents the flow of the probability mass along edge e at stationarity. Suppose we choose a path
Px,y between each pair of vertices x, y (note that more generally this may be a distribution of paths). For
an edge e let flow of e be defined as follows:

f(e) =
!

x,y:e∈Px,y

π(x)π(y).

The congestion of e is defined as f(e)
Q(e) . In the following lemma we show that the inverse of the Poincaré is

at most maxx,y |Px,y| ·maxe
f(e)
Q(e) .

Lemma 18.8. For any reversible Markov chain, suppose for every pair of states x, y ∈ Ω we choose a path
Px,y.

1

α
≤ max

e

f(e)

Q(e)
·max

x,y
|Px,y|.

where α is the Poincaré constant.

Proof. Consider an arbitrary function f . Note that for every path Px,y we can choose an orientation of the
edges of this say e+ is the head and e− is the tail such that f(x)− f(y) =

.
e∈Px,y

f(e+)− f(e−). We can
write

Var(f) =
1

2

!

x,y

(f(x)− f(y))2π(x)π(y)

=
1

2

!

x,y

/

0
!

e∈Px,y

f(e+)− f(e−)

1

2
2

π(x)π(y)

≤ 1

2

!

x,y

|Px,y|
!

e∈Px,y

(f(e+)− f(e−))2π(x)π(y)

=
1

2

!

e=(x′,y′)

(f(x′)− f(y′))2
Q(e)

Q(e)

!

x,y:e∈Px,y

|Px,y|π(x)π(y) ≤ maxx,y|Px,y| ·max
e

f(e)

Q(e)
· E(f, f).

where the inequality follows by Cauchy-Schwarz inequality.

Note that we typically let Px,y be a shortest path from x to y. So, Px,y is no more than the diameter. Since
in all Markov chains that we constant diameter is only a polynomial in the size of the input, usually, the
most important parameter to bound the mixing time is the maximum congestion.

Let us use the above machinery to bound the mixing time of a simple lazy random walk on a path. Consider
the a simple path of length n. The stationarity distribution is almost uniform. Observe that there is a
unique path between each pair of vertices. So, the edge (n/2, n/2+1) has the maximum congestion of about

(n/2)(n/2) 1n
1
n

1
n

1
4

≈ n.

Since Diam(G) = n, we get
1

α
≤ 1

n2
.



Lecture 18: Path Technology 18-5

It follows that the chain mixes in O(n2 log(n)). Note that this bound is O(log n) off from the bound we
proved using strong stationarity time. The reason is that here we are just upper bound the second eigenvalue
of K and we use a very crude bound on all other eigenvalues (we are upper bound each λi by λ2). So, in
many applications of the Path technology this O(log(n)) loss in inherent, but usually it does not chain the
mixing time significantly, because it is logarithmic in the size of the state space.

Dumbell Graph Note that if we have a Markov chain with a diameter that is polynomial in the size of
the state space, then we should expect a very slow mixing. This is essentially what happens in the path
example. So, one can ask if we have a Markov chain with a logarithmic size diameter, can it still have
a mixing time polynomial in the size of the instance? The answer is yes, and the famous Dumbell graph
is perhaps the worst example. In this graph the single edge which is connecting the two cliques will be a
bottleneck because all of the flow between the two cliques must go over this edge.

Note that although we didn’t prove, but the path technology gives a necessary and sufficient condition for
bounding the Poincaré constant. Namely, if we can show that for any routing of the multicommodity flow
there is an edge with large congestion, it would imply that the chain mixes very slowly.

bottleneck
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