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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Definition 16.1 (Coupling). Let µ, ν be probability distributions over Ω. A coupling between µ, ν is a
probability distribution π on Ω × Ω that preserves the marginals of µ, ν respectively. In particular, for all
x ∈ Ω, !

y

π(x, y) = µ(x) and
!

y

π(y, x) = ν(x).

Let us give an example: Consider the following two distributions over {1, 2, 3}. Consider the following

1 2 3
µ(.) 0.2 0.5 0.3
ν(.) 0.3 0.4 0.3

coupling π(1, 1) = 0.2,π(2, 2) = 0.4,π(3, 3) = 0.3,π(2, 1) = 0.1. Observe that all marginal probabilities are
satisfied; for example π(2, 2) + π(2, 1) = 0.5 = µ(2). Furthermore, if (X,Y ) is a sample of π, we have that
Pπ [X = Y ] = 0.9. You can compare this coupling with an independent coupling in which p̃i(i, j) = µ(i)ν(j).
In that case we would have Pπ̃ [X = y] = π(1)ν(1) + π(2)ν(2) + π(3)ν(3) = 0.35.

Lemma 16.2 (Coupling Lemma). Let µ and ν be probability distributions on Ω, and let X and Y be random
variables with distributions µ and ν, respectively. Then

1. P [X ∕= Y ] ≥ ‖µ− ν‖TV .

2. There exists a coupling between µ and ν such that P [X ∕= Y ] = ‖µ− ν‖TV .

Proof. We prove the 2nd part, that is we construct the optimal coupling between µ and ν. The coupling
will be very similar to the above example. For any i in the support of these distributions, we let π(i, i) =
min{µ(i), ν(i)}. For all other pairs i ∕= j we sequentially choose π(i, j). Obviously, there is a way to match
the remaining mass in the distributions such that all marginals are preserved. For example, when we process
i ∕= j we define π(i, j) = min{µ(i)− π(i, .), ν(j)− π(., j)}.

Note that obviously, this coupling has the highest probability that X = Y because for any i, we must have

P(X,Y )∼π [X = i, Y = i] ≤ min{µ(i), ν(i)}

in order to satisfy the marginal of i. Therefore,

P [X ∕= Y ] = 1−
!

i

π(i, i) =
!

i

µ(i)−min{µ(i), ν(i)} = ‖µ− ν‖TV .
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16.1 Coupling for Bounding Mixing Time

In the last section we saw the coupling as a technique to prove upper bound on the mixing time. Here, we
make this more formal, and we will see many examples on how to use this idea to bound the mixing time of
a chain.

Definition 16.3 (Markovian Coupling). A coupling of a Markov chain is a pair process Xt, Yt such that
each process in isolation looks like an honest simulation of the chain, i.e., for all states x, y,

!

x′,y′

P [Xt+1 = y, Yt+1 = y′|Xt = x, Yt = x′] = K(x, y)

and similarly, !

x′,y′

P [Yt+1 = y,Xt+1 = y′|Yt = x,Xt = x′] = K(x, y),

and for all t ≥ 0, if Xt = Yt, then Xt+1 = Yt+1.

We need another definition before we prove a bound on mixing time using a Markov chain coupling.

Definition 16.4 (Stopping Time). A stopping time with respect to a sequence of random variables X1, X2, . . .
is an integer random variable T with the property that for each t ∈ {1, 2, . . . }, the occurrence or non-
occurrence of the event T = t depends only on the values of X1, X2, . . . , Xt.

For example, consider a random walker on a line who starts from the origin. Consider the first time that it
is at distance n away from the origin. This is a stopping time.

Lemma 16.5. Let Xt, Yt be a coupling of a Markov chain where X0 = x and Y0 ∼ π. Let

TX,Y = min{t : Xt = Yt},

be the stopping time until the two process meet. Then,

‖Kt(x, .)− π‖TV ≤ P [TX,Y > t] .

Proof. The main observation is that the Markovian coupling between X,Y gives a coupling between the two
random variables Xt, Yt at any time t ≥ 1. Therefore by the coupling lemma.

‖Kt(x, .)− π‖TV ≤ P [Xt ∕= Yt] = P [TX,Y > t] .

The last equality is by the definition of the coupling.

In the next section we prove a bound on the mixing time of a hypercube using this idea.

16.2 Simple Random Walk on a Hypercube {0, 1}n

Consider the n dimensional hypercube with 2n vertices, where every vertex is labelled with an n bit string.
Two vertices are adjacent if their n bit strings differ in exactly one bit. Consider the following Markov chain.

i) At any vertex x, with probability 1/2 do nothing (self-loop)
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ii) Otherwise, pick a uniformly random coordinate and flip it.

Equivalently, we can consider the following Markov chain: At any vertex x choose a uniformly random
coordinate i and substitute it with a uniformly random bit b ∈ {0, 1}.

Having the second description, considering the following coupling between Xt, Yt: Xt and Yt choose the same
coordinate i and the same bit b.

Observe that this is a valid coupling, because each Xt, Yt is following the same random walk. Furthermore,
observe that TX,Y is at most the time by which each coordinate is chosen at least once. This is because once
we choose a coordinate i from that moment Xt, Yt will agree on that coordinate.

So, it is enough to find the expected time that it takes to choose each coordinate at least once, and then we
can use the Markov’s inequality.

This problem is known as the coupon collector problem: At each time step, the collector gets one out of n
coupons uniformly at random. His aim is to continue till he has seen every coupon at least once. Let Tk

be the time it takes to see k coupons assuming he has already seen k − 1 coupons. Obviously T1 = 1, and"n
i=1 Ti is the time to take all coupons. It turns out that for each k, E [Tk+1] =

1
1−k/n . This is because

he has already seen k coupons; so the next coupon will be new only with probability 1 − k/n. This is a
geometric random variable, so its mean is 1

1−k/n . By linearity of expectation we get

E [T1 + · · ·+ Tn] =

n!

k=1

1

1− (k − 1)/n
=

n!

k=1

n

n− k + 1
= nHn.

In general, it is not hard to see that the coupon collector time is highly concentrated around its expectation,
in the sense that

P [T1 + · · ·+ Tn > n lnn+ cn] ≤ e−c.

We prove a weaker bound: For any i, the probability that coupon i is not collected by time t = cn lnn is
at most (1 − 1/n)t ≤ n−c. So, by union bound, the probability that all coupons are not collected by time
2n lnn is at most 1/n.

P [T1 + · · ·+ Tn > cn lnn] ≤ n−c+1.

16.3 Top-to-Random Shuffling

Recall that in the Top-to-Random shuffling: Each time we pick up the top card in a deck and place it at
uniformly random location in the deck. We want to design a coupling strategy to study the mixing time of
this chain.

It turns out it is much easier to design a coupling for the following inverse chain: Each time choose a
uniformly random card and place it at the top of the deck.

We claim that both of these walks have the same mixing time. This fact is in fact true for any Markov chain
on groups. In this case note that we are considering a Markov chain on the symmetric group Sn. In general
consider any group G and suppose we have a set of generators {g1, . . . , gk}. In each time step we choose a
generator from this set according to a probability distribution µ and we apply it to the current state. The
inverse chain is defined as follows: Consider the set of generators {g−1

1 , . . . , g−1
k }. At any state x, choose a

generator g−1
i from the same distribution µ and apply it to x. Observe that both of these walks are doubly

stochastic, so have a uniform stationary distribution.
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Now for any path in the original walk x ◦ σ1 ◦ · · · ◦ σt we can construct a path in the inverse walk

f(x ◦ σ1 ◦ · · · ◦ σt) = x ◦ σ−1
1 ◦ · · · ◦ σ−1

t .

Observe that these two paths occur with exactly the same probability. Furthermore, if two paths x ◦ σ and
x◦τ reach the same state, so does the inverse path, f(x◦σ) = f(x◦τ). This means that f defines a bijection
between the elements of the group, i.e., the states, in the original walk and the states of the inverse walk.
Therefore, the distribution of the original walk at time t, Kt(x, .), and the distribution of the inverse walk
at time t, K̃t(x, .), are the same up to relabelling the states. But since the stationary distribution of the
chain is uniform,

‖Kt(x, .)− π‖TV = ‖K̃t(x, .)− π‖TV .

Having this tool all we need to do to study the Top-to-Random shuffling is to study the mixing time of the
Random-to-Top shuffling. Consider the following coupling: At any time both chains If Xt chooses the card
labelled i to move to the top, Yt also chooses the card labelled i and moves it to the top.

Note that this is a valid coupling. In particular, the chain Xt is exactly running the original Markov chain.
Yt is also running the original chain because it chooses each of the n card uniformly at random.

Now, let us study the time TXY at which we get Xt = Yt. Observe that whenever we choose the card labelled
i, from now on this card will be in exactly the same location in both chains. So, we have Xt = Yt the first
time by which we have chosen each card at least once. This is again the coupon collector problem. So, this
chain mixes in time n lnn.

16.4 Graph Coloring

Let G be a graph with maximum degree ∆. Obviously, any such graph has a coloring with q = ∆+1 colors:
Greedily color every vertex with a color with is not used by any of its neighbors. There is a well-known
Brooks theorem which says that any graph has a coloring with ∆ colors unless it has a ∆+1 clique or ∆ = 2
and it has an odd cycle. For q < ∆ even the decision problem is NP-hard.

So, let us focus on the case the case where q ≥ ∆+1. We want to see if the Metropolis chain mixes rapidly.
Note that the chain is very simple to describe: At each time we choose a uniformly random vertex and a
uniformly random color and we color that vertex with that color if possible.

It turns out that if q = ∆ + 1, then the above chain is not irreducible as shown below: Even though the

B C

A

graph has 6 proper coloring we cannot move out of the above state. In other words, the Metropolis chain is
not irreducible in this case.

First, we argue that the Metropolis chain is irreducible if q ≥ ∆ + 2. It is enough to show that we can
go from any proper coloring to any fixed proper coloring, because the chain is reversible. We show that if
q ≥ ∆+ 2 Consider a vertex v and suppose it has a color c in the target coloring. If we can re-color v wi

The following is a major open problem in the field of counting/sampling:

Conjecture 16.6. The Metropolis chain mixes in time O(n log n) if q ≥ ∆+ 2.



Lecture 16: Coupling 16-5

It turns out that even though there have been a huge amount of efforts we are still very far from prove the
above conjecture. In this lecture and the next we will discuss several of the techniques to bound mixing time
for different ranges of q.

Theorem 16.7. For any q ≥ 4∆+ 1 the mixing time is O(n log n).

Let us construct a coupling between two copies of the chain. Let Xt, Yt be two colorings of graph G. Consider
the natural metric where d(Xt, Yt) is equal to the number of vertices with different colors. We construct a
coupling of Xt+1, Yt+1 such that

E [d(Xt+1, Yt+1)] ≤ E [d(Xt, Yt)]

#
1− q − 4∆

qn

$
. (16.1)

Note that once we have the above inequality by a repeated application we can show that

E [d(Xt, Yt)] ≤ d(X0, Y0)

#
1− q − 4∆

qn

$t

≤ e−
(q−4∆)t

qn .

Now, note that d(X0, Y0) ≤ n because in the worst case all vertices have different colors. Therefore, for
t = 8∆n log n, we have E [d(Xt, Yt)] ≤ 1/n which implies that P [Xt ∕= Yt] ≤ 1/n.

So, it remains to prove (16.1). We use the natural coloring, i.e., we use the same coin for both chains. Both
Xt, Yt will choose the same vertex v and try to color it with c if possible. Now, let us consider under what
circumstances the distance of Xt, Yt will decrease or increase.

• Good Moves: This is a move in which the distance between Xt, Yt decreases. Suppose we choose
a vertex of disagreement, say v, and we choose a color that belongs to none of the neighbors of v in
Xt, Yt. In such a case the distance decreases by 1. There are d(Xt, Yt) such vertices. Note that v
has at most ∆ neighbors so at most 2∆ colors are used on the neighbors of v. So, if the color c is
different from these 2∆, v will have the same color in Xt+1, Yt+1, so d(Xt+1, Yt+1) = d(Xt, Yt) − 1.

The probability of this event is d(Xt,Yt)(q−2∆)
qn .

• Bad Moves: This is a move in which the distance between Xt, Yt increases. Now, suppose we choose
a vertex of agreement, say v and a color c. A bad event is if c is an invalid color for v in exactly one
of the chains. In such a case the distance increases by 1. Observe that such an event happens if v
is a neighbor of a disagreement vertex, say u, and c is the color of u in one of the two chains. The
disagreement vertices have at most ∆dt(Xt, Yt) neighbors, and for any such neighbors there are at 2
bad colors. Therefore,

P [d(Xt+1, Yt+1) = d(Xt, Yt) + 1] ≤ 2∆dt(Xt, Yt)

qn

• Neutral Moves: In any other move the distance remains invariant.

Putting these together we have,

E [d(Xt+1, Yt+1)|Xt, Yt] ≤ d(Xt, Yt)−
d(Xt, Yt)(q − 2∆)

qn
+

d(Xt, Yt)2∆

qn

Taking expectation from both sides proves (16.1).
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