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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Matrix Eigenvalues, A crash course

Let A be a d×d real symmetric matrix, then A has all real eigenvalues which we can order λ1(A) ≥ λ2(A) ≥
· · · ≥ λd(A). The operator norm of A is

∥A∥ := max
x:∥x∥=1

∥Ax∥2 = max{|λii(A)| : i ∈ {1, . . . , d}}

The trace of A is

Tr(A) =

d∑
i=1

Ai,i =

n∑
i=1

λi(A).

The trace norm of A is ∥A∥∗ =
∑d

i=1 |λi(A)|. A symmetric matrix is positive semidefinite (PSD) if all
its eigenvalues are nonnegative. Note that for a PSD matrix A, we have Tr(A) = ∥A∥∗. We also recall

the matrix exponential eA
∑∞

k=0
Ak

k! which is well-defined for all real symmetric A and is itself also a real
symmetric matrix. Equivalently, if A has eigenvectors v1, . . . , vd corresponding to λ1, . . . , λd, then

eA =

d∑
i=1

λiviv
T
i .

Observe that if A is symmetric, then eA is always PSD, as the next argument shows. One often says A, eA

are simultaneously diagonalizable as they have the same set of eigenvectors.

Finally, note that for symmetric matrices A and B, we have |Tr(AB)| ≤ ∥A∥ · ∥B∥∗. To see this, let

B =
∑d

i=1 λiuiu
T
i , then

|Tr(AB)| =

∣∣∣∣∣
d∑

i=1

λi Tr(Auiu
T
i )

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

λiu
T
i Aui

∣∣∣∣∣ ≤
∣∣∣∣∣

d∑
i=1

λi∥A∥

∣∣∣∣∣ = ∥A∥∥B∥∗.

Many classical statements are either false or significantly more difficult to prove when translated to the
matrix setting. For instance, while ex+y = exey = eyex is true for arbitrary real numbers x and y, it is only
the case that eA+B = eAeB if A and B are simultaneously diagonalizable. However, somewhat remarkably,
the matrix analog does hold if we do it inside the trace.

Theorem 12.1 (Golden-Thompson inequality). If A and B are real symmetric matrices, then Tr(eA+B) ≤
Tr(eAeB).

We do not prove this theorem here
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12.2 The Laplace transform for matrices

We will consider now a random d×d real matrixX. The entriesXi,j of X are all (not necessarily independent)
random variables. We have seen inequalities (like those named after Chernoff and Azuma) which assert that
if X = X1 +X2 + · · ·+Xn is a sum of independent random numbers, then X is tightly concentrated around
its mean. Our goal now is to prove a similar fact for sums of independent random symmetric matrices. First,
recall that the trace is a linear operator and it commutes with expectation, namely Tr(E [X]) = E [Tr(X)].
Note that E [X] is the matrix defined by (E [X])i,j = E [Xi,j ].

Suppose that X1, X2, . . . , Xn are independent random real symmetric matrices. Let X = X1+X2+ · · ·+Xn.
Our first goal will be to bound the probability that X has an eigenvalue bigger than t. To do this, we will try
to extend the method of exponential moments to work with symmetric matrices, as discovered by Ahlswede
and Winter. It is much simpler than previous approaches that only worked for special cases.

Note that for β > 0, we have λi(e
βX) = eβλi(X). Therefore:

P
[
max

i
λi(X) > t

]
= P

[
max

i
eβλi(X) > eβt

]
≤ P

[
Tr(eβX) > eβt

]
(12.1)

where the last inequality uses the fact that all the eigenvalues of eβX are nonnegative.

Now, Markov’s inequality implies that

P
[
Tr(eβX > eβt

]
≤

E
[
Tr(eβX)

]
eβt

. (12.2)

As in our earlier uses of the Laplace transform, our goal is now to bound E
[
Tr(eβX)

]
by a product that has

one factor for each term Xi.

Let Sk = X1 + · · · + Xk be a prefix sum; so Sn = X. In the matrix setting, this is more subtle: Using
Golden-Thmpson’s inequality,

E
[
Tr(eβX)

]
= E

[
Tr(eβ(Sn−1+Xn))

]
≤ E

[
Tr(eβSn−1eβXn)

]
.

Now we push the expectation over Xn inside the trace:

E
[
Tr(eβSn−1eβXn)

]
= E

[
Tr(eβSn−1E

[
eβXn |X1, . . . , Xn−1

]
)
]
= E

[
Tr(eβSn−1E

[
eβXn)

]]
= Tr(eβSn−1E

[
eβXn)

]
),

and we have used independence to pull eβSn−1 outside the expectation and then to remove the conditioning.
Finally, we use the fact that Tr(AB) ≤ ∥A∥ · ∥B∥∗ and ∥B∥∗ = Tr(B) when B is PSD (as is the case for
eβSn−1):

Tr(eβSn−1E
[
eβXn)

]
) ≤ ∥eβSn−1∥E

[
Tr(eβXn)

]
Now, by induction,

E
[
Tr(eβX)

]
≤ Tr(I)

n∏
i=1

∥E
[
eβXi

]
∥ = d ·

n∏
i=1

∥E
[
eβXi

]
∥

Combining with (12.1) and (12.2) we get

P
[
max

i
λi(X) > t

]
≤ e−βt · d ·

n∏
i=1

∥E
[
eβXi

]
∥

Applying the same thing to −X we obtain,

P [∥X∥ > t] ≤ e−βt · d ·

(
n∏

i=1

∥E
[
eβXi

]
∥+

n∏
i=1

∥E
[
e−βXi

]
∥

)
(12.3)
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12.3 A Matrix Concentration Inequality

Let Y be a random, symmetric, psd d × d matrix with E [Y ] = I. Suppose that ∥Y ∥ ≤ L with probability
one (this condition can be seen as analogue of Azuma-Hoeffding inequalities).

Theorem 12.2. If Y1, Y2, . . . , Yn are i.i.d. copies of Y , then for any ϵ ∈ (0, 1) the following holds. Let
λ1, λ2, . . . , λn denote the eigenvalues of 1

n

∑n
i=1 Yi. Then

P [{λ1, λ2, . . . , λn} ⊆ [1− ϵ, 1 + ϵ]] ≤ 1− 2d exp(−ϵ2n/4L).

There is a slightly nicer way to write this using the Löwner ordering of symmetric matrices: Recall that
A ⪰ B means that A−B is PSD. We can rewrite the conclusion of the above theorem as

P

[
(1− ϵ)I ⪯ 1

n

∑
i

Yi ⪯ (1 + ϵ)I

]
≤ 1− 2d exp(−ϵ2n/4L).

Proof. Define Xi := Yi − E [Yi] and X = X1 + · · ·+Xn. Then the claim is equivalent to

P [∥X∥ > ϵn] ≤ 2d exp(−ϵ2n/4L).

We know from previous section that it will suffice to bound ∥E
[
eβXi

]
∥ for each i. First observe that, for all

i,
∥Xi∥ = ∥Yi − E [Yi] ∥ =

Yi⪰0
∥Yi∥ − 1 = L− 1.

So, for β < 1/L, we have −I ⪯ βXi ⪯ I. Next, we use the fact that

1 + x ≤ ex ≤ 1 + x+ x2∀x ∈ [−1, 1].

Note that if A is a real symmetric matrix with ∥A∥ ≤ 1, then since I, A,A2, and eA are simultaneously
diagonalizable, this yields

I +A ⪯ eA ⪯ I +A+A2.

So,

E
[
eβXi

]
⪯ I + βE [Xi] + β2E

[
X2

i

]
=

E[Xi]=0
I + β2E

[
X2

i

]
⪯ eβ

2E[X2
i ]

Lastly,
E
[
X2

i

]
= E

[
(Yi − E [Yi])

2
]
= E

[
Yi − I)2

]
= E

[
Y 2
i

]
− I ⪯ E [Yi∥Yi∥] ⪯ LE [Yi] = LI.

Therefore, ∥E
[
eβXi

]
∥ ≤ ∥eβ2LI∥ = eβ

2L. Plugging this back into (12.3) we get

P [∥X∥ > t] ≤ 2de−βteβ
2Ln ≤

β=ϵ/L
2de−ϵ2n/4L.

This completes the proof.
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