Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Properties of Effective Resistance

We continue our discussion of effective by giving an overview of basic properties of effective resistances.
Lemma 12.1 (Metric Property). For any triple of vertices s, t, u,

$$
\operatorname{Reff}(s, t)+\operatorname{Reff}(t, u) \geq \operatorname{Reff}(s, u)
$$

Proof. By (??),

$$
\begin{aligned}
\operatorname{Reff}(s, u) & =b_{s, u}^{\top} L_{G}^{\dagger} b_{s, u} \\
& =\left(b_{s, t}+b_{t, u}\right)^{\top} L_{G}^{\dagger}\left(b_{s, t}+b_{t, u}\right) \\
& =b_{s, t}^{\top} L_{G}^{\dagger} b_{s, t}+b_{t, u}^{\top} L_{G}^{\dagger} b_{t, u}+2 b_{s, t}^{\top} L_{G}^{\dagger} b_{t, u} \\
& =\operatorname{Reff}(s, t)+\operatorname{Reff}(t, u)+2 b_{s, t}^{\top} L_{G}^{\dagger} b_{t, u} .
\end{aligned}
$$

So, we just need to show that the last term in the RHS is non-positive. The last term is equal to $p(t)-p(u)$ when we send one unit of flow from s to t. But, this means that t has the lowest potential in the network, so $p(u) \geq p(t)$ as required.

Lemma 12.2 (Rayleigh Monotonicity Property). For a weight function $w: E \rightarrow \mathbb{R}_{+}$let $\operatorname{Reff}_{w}(.,$.$) be the$ effective resistance function when the conductance of each edge $e \in E$ is $w(e)$. For any w, w^{\prime} such that $w \leq w^{\prime}$ and any $s, t \in V$,

$$
\operatorname{Reff}_{w}(s, t) \geq \operatorname{Reff}_{w^{\prime}}(s, t)
$$

Proof. Let x be the one unit electrical flow from s to t with respect to w. Since $w \leq w^{\prime}$,

$$
\operatorname{Reff}_{w}(s, t)=\sum_{e \in E} \frac{x(e)^{2}}{w(e)} \geq \sum_{e \in E} \frac{x(e)^{2}}{w^{\prime}(e)} .
$$

Since x is a feasible flow that sends one unit of flow from s to t, by Thompson's law, the RHS is at least the energy of the electrical flow that sends one unit from s to t w.r.t. w^{\prime}.

Lemma 12.3 (Convexity). The effective resistance is convex w.r.t. the conductances and is concave w.r.t. resistances. In particular, for any s, t,

$$
\begin{align*}
\frac{1}{2}\left(\operatorname{Reff}_{1 / w_{1}}(s, t)+\operatorname{Reff}_{1 / w_{2}}(s, t)\right) & \leq \operatorname{Reff}_{2 /\left(w_{1}+w_{2}\right)}(s, t) . \tag{12.1}\\
\frac{1}{2}\left(\operatorname{Reff}_{w_{1}}(s, t)+\operatorname{Reff}_{w_{2}}(s, t)\right) & \geq \operatorname{Reff}_{\left(w_{1}+w_{2}\right) / 2}(s, t) \tag{12.2}
\end{align*}
$$

12.1.1 Bounding the Effective Resistance

?? gives a simple method to upper bound the effective resistance of a pair of vertices: All we need to do is to find a flow from s to t of small ℓ_{2}^{2} energy. Conversely, the following lemma gives a lower-bound on the effective resistance of a pair of vertices.

Lemma 12.4 (Nash Williams Inequality). Let $S_{1}, S_{2}, \ldots, S_{k} \subseteq V$ such that for all $1 \leq i \leq k, s \in S_{i}, t \notin S_{i}$. If for all $1 \leq i<j \leq k, E\left(S_{i}, \overline{S_{i}}\right) \cap E\left(S_{j}, \overline{S_{j}}\right)=\emptyset$, then

$$
\operatorname{Reff}(s, t) \geq \sum_{i=1}^{k} \frac{1}{\sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} w(e)}
$$

Proof. Suppose x sends one unit of flow from s to t. We lower bound $\mathcal{E}(x)$ with the expression in the RHS. Since the cuts corresponding to S_{1}, \ldots, S_{k} are disjoint, we can write

$$
\mathcal{E}(x) \geq \sum_{i=1}^{k} \sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} \frac{x^{2}(e)}{w(e)}
$$

Therefore, it is enough to show that for each $1 \leq i \leq k$,

$$
\begin{equation*}
\sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} \frac{x(e)^{2}}{w(e)} \geq \frac{1}{\sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} w(e)} \tag{12.3}
\end{equation*}
$$

Since $\left(S_{i}, \overline{S_{i}}\right)$ separates $s, t, \sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)}|x(e)| \geq 1$. Therefore, by Cauchy-Schwarz inequality,

$$
\begin{aligned}
1 & \leq\left(\sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} \frac{|x(e)|}{\sqrt{w(e)}} \cdot \sqrt{w(e)}\right)^{2} \\
& \leq\left(\sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} \frac{x(e)^{2}}{w(e)}\right) \cdot\left(\sum_{e \in E\left(S_{i}, \overline{S_{i}}\right)} w(e)\right)
\end{aligned}
$$

This proves (12.3) and completes the proof of the lemma.

As a simple application of the above lemma we can show that in a $\sqrt{n} \times \sqrt{n}$ grid there is a pair of vertices s, t such that $\operatorname{Reff}(s, t) \geq \Omega(\log (n))$.

Next, we discuss methods for upper bounding the effective resistance between a pair of vertices s, t. Note that to upper bound the effective resistance it is enough to construct a feasible flow that sends one unit of flow from s to t, then the energy of the flow will give an upper bound on $\operatorname{Reff}(s, t)$.

For example, suppose there are k edge disjoint paths each of length at most ℓ from s to t. Then we can construct x by sending $1 / k$ amount of flow on each path and

$$
\mathcal{E}(x) \leq \sum_{i=1}^{k} \sum_{e \in P_{i}} x(e)^{2}=\sum_{i=1}^{k} \sum_{e \in P_{i}} \frac{1}{k^{2}} \leq \frac{k \ell}{k^{2}}
$$

Unfortunately, we may not be able to find many edge disjoint paths between s, t even though $\operatorname{Reff}(s, t)$ is small. For example, in a k-dimensional hypercube there are at most k edge disjoint paths between each pair of vertices because the degree of each vertex is k. But because the length of each path between $s=00 \ldots 0$ and $t=11 \ldots 1$ is at least k, the best upper bound that we can get is $O(1)$.

12.2 Hitting Time

Consider a simple random walk on a (weighted) graph G, that is at a given vertex u it goes to random neighbor v with probability proportional to $w_{u, v}$, i.e.,

$$
\mathbb{P}\left[X_{1}=v \mid X_{0}=u\right]=\frac{w_{u, v}}{d_{w}(u)},
$$

where $d_{w}(u)=\sum_{v^{\prime} \sim u} w_{u, v^{\prime}}$ is the weighted degree of u. In this section we study the hitting time: for two vertices $u, v \in V$, we define the hitting time $H_{u, v}$ from u to v as the expected number of steps for the random walk to hit v (for the first time) when started at u. Formally, define the random variable

$$
T=\min \left\{t \geq 0: X_{t}=v\right\}
$$

Then $H_{u, v}=\mathbb{E}\left[T \mid X_{0}=u\right]$. Note that his quantity is not necessarily symmetric, i.e., $H_{u, v} \neq H_{v, u}$ in general.

Lemma 12.5. Let b be the vector which injects $d_{w}(u)$ unit at any vertex u and extracts $d_{w}(V)$ at v, and let p be the corresponding potential vector. For any vertex $u \neq v$,

$$
H_{u, v}=p(u)-p(v)
$$

Proof. Fix a vertex v, and let $h: V \rightarrow \mathbb{R}_{\geq} 0$ be the hitting time vector. Then, for any $u \neq v$, we can write the following system of linear equations for the Hitting time:

$$
h(u)=1+\sum_{u^{\prime}} \frac{w_{u, u^{\prime}}}{d_{w}(u)} h\left(u^{\prime}\right)
$$

Equivalently,

$$
d_{w}(u)=\sum_{u^{\prime}} w_{u, u^{\prime}}\left(h(u)-h\left(u^{\prime}\right)\right)=L_{G} h(u)
$$

Adding up the above equalities for $u \neq v$ we obtain,

$$
d_{w}(V)-d_{w}(v)=\sum_{u^{\prime}} w_{u^{\prime}, v}\left(-h(v)+h\left(u^{\prime}\right)\right)
$$

i.e., the constraint for v is redundant.

Now, if we consider the demand vector $b=d_{w}-\mathbf{1}_{v} d_{w}(V)$, i.e., we inject $d_{w}(u)$ at any vertex $u \in V$ and we extra all the flow at v and solve for p then p exactly satisfies all of the above equations:

$$
L_{G} p=b
$$

As alluded to before these equations have a unique solution (when the graph is connected) up to a shift, i.e., if h is a solution then so is $h+\alpha \mathbf{1}$ for any $\alpha \in \mathbb{R}$. So, we add one extra constraint that $h(v)=0$. Equivalently, $p(u)-p(v)=h(v)-h(u)=h(v)$ as desired.

12.3 Commute Time

Given a pair of vertices u, v, the commute time $C_{u, v}$ is defined as:

$$
C_{u, v}:=H_{u, v}+H_{v, u}
$$

Theorem 12.6 (Commute Time). For any weighted graph $G=(V, E)$ and any pair of vertices u, v,

$$
C_{u, v}=\operatorname{Reff}(u, v) d_{w}(V)
$$

Proof. We build on the proof of Theorem 12.6. We consider 3 different demand vectors:

- Let b^{A} be the demand vector that injects $d_{w}(x)$ at any vertex x and extracts $d_{w}(V)$ at v.
- Let b^{B} be the demand vector that injects $d_{w}(V)$ at u and extracts $d_{w}(x)$ at any vertex x.
- Let $b^{C}=b^{A}+b^{B}$. In particular, b^{C} injects $d_{w}(V)$ at u and extracts it at v.

By, Theorem 12.6,

$$
H_{u, v}=p_{b^{A}}(u)-p_{b^{A}}(v)
$$

By symmetry,

$$
H_{v, u}=-\left(p_{b^{B}}(v)-p_{b^{B}}(u)\right)
$$

So,

$$
C_{u, v}=p_{b^{A}}(u)+p_{b^{B}}(u)-\left(p_{b^{A}}(v)+p_{b^{B}}(v)\right) \quad=p_{b^{C}}(u)-p_{b^{C}}(v)
$$

Most importantly, in the second equality we used that p can be obtained by solving a linear system involving the same matrix L_{G}^{\dagger}.
But by definition of effective resistance

$$
p_{b^{C}}(u)-p_{b^{C}}(v)=d_{w}(V)\left(p_{b_{u, v}}(u)-p_{b_{u, v}}(v)\right)=d_{w}(V) \operatorname{Reff}(u, v)
$$

As an application, we can use ?? to give another proof of Lemma 12.1. Say for a triple of vertices s, t, u we want to show

$$
\operatorname{Reff}(s, t)+\operatorname{Reff}(t, u) \geq \operatorname{Reff}(s, u)
$$

By ?? this is equivalent to

$$
C(s, t)+C(t, u) \geq C(s, u)
$$

Now, by the definition of expected Hitting time this is equivalent to

$$
H(s, t)+H(t, s)+H(t, u)+H(u, t) \geq H(s, u)+H(u, s) .
$$

Rearranging the terms we need to show

$$
(H(s, t)+H(t, u))+(H(u, t)+H(t, s)) \geq H(s, u)+H(u, s)
$$

But, for an triple of vertices s, t, u we have

$$
H(s, t)+H(t, u) \geq H(s, u)
$$

The expected number of steps to go from s to u is smaller than the expected number of steps to go from s to u while visiting t along the way.

12.4 Cover Time

The cover time of $G=(V, E, w)$ starting from u is the quantity $\operatorname{cov}_{u}(G)$ which is the expected number of steps needed to visit every vertex of G started at u. Again, we can define this formally: Let

$$
T=\min \left\{t \geq 0:\left\{X_{0}, X_{1}, \ldots, X_{t}\right\}=V\right\}
$$

Then,

$$
\operatorname{cov}_{u}(G)=\mathbb{E}\left[T \mid X_{0}=u\right]
$$

Finally, we define the cover time of G as $\operatorname{cov}(G)=\max _{u \in V} \operatorname{cov}_{u}(G)$.
We can now use Theorem 12.6 to give a universal upper bound on the cover time of any graph.
Theorem 12.7 (Cover Time). For any unweighted connected graph $G=(V, E, w)$, we have cov $(G) \leq$ $2|E|(|V|-1)$.

Proof. Fix a spanning tree T of G. Then we have

$$
\operatorname{cov}(G) \leq \sum_{\{x, y\} \in T} C_{x, y}
$$

The right-hand side can be interpreted as a very particular way of covering the graph G : First, given the tree T, we can turn it into a TSP tour by visiting every edge twice, we start at some node x_{0} and "walk" around the edges of the T in order $x_{0}, x_{1}, x_{2}, \ldots, x_{2(n-1)}$. In such a case the expected time from x_{0} to get to x_{1}, is $H_{x_{0}, x_{1}}$, and similarly to cover G it takes at most,

$$
\sum_{i=0}^{2(n-1)} H_{x_{i}, x_{i+1}}=\sum_{\{x, y\} \in T} C_{x, y}
$$

Note that this is just one particular way to visit every node of G, so it gives an upper bound on the cover time. Finally, we note that if $\{x, y\}$ is an edge of the graph, then by Theorem 12.6 we have $C x y=2|E| \operatorname{Reff}(x, y) \leq$ $2|E|$. Here we use the fact that for every edge $\{x, y\}$ of G, the effective resistance is at most the resistance of the edge connecting x to y. A candidate flow is just send one unit of flow directly from x to y on the edge.

12.5 Examples of Cover Time

First observe that if G is a d regular graph by a direct application of Theorem 12.7,

$$
\operatorname{cov}(G) \leq d n(n-1)
$$

The path Consider first G to be the path on vertices $\{0,1, \ldots, n\}$. Then

$$
H_{0, n}+H_{n, 0}=C_{0, n}=2 n \operatorname{Reff}(0, n)=2 n^{2}
$$

Since $H_{0, n}=H_{n, 0}$ by symmetry, we conclude that $H_{0, n}=n^{2}$. Note that Theorem 12.7 implies that $\operatorname{cov}(G) \leq 2 n^{2}$, and clearly $\operatorname{cov}(G) \geq H_{0, n}=n^{2}$, so the upper bound is off by at most a factor of 2 .

The lollipop. Consider next the "lollipop graph" which is a path of length $n / 2$ from u to v with an $n / 2$ clique attached to v. We have

$$
H_{u, v}+H_{v, u}=C_{u, v}=\Theta\left(n^{2}\right) \operatorname{Reff}(u, v)=\Theta\left(n^{3}\right)
$$

On the other hand, we have already seen that $H_{u, v}=\Theta\left(n^{2}\right)$. We conclude that $H_{v, u}=\Theta\left(n^{3}\right)$, hence $\operatorname{cov}(G)=\Omega\left(n^{3}\right)$. Again, the bound of Theorem 12.7 is $\operatorname{cov}(G) \leq O\left(n^{3}\right)$, so it's tight up to a constant factor here as well.

The complete graph. Finally, consider the complete graph G on n nodes. In this case, Theorem 12.7 gives $\operatorname{cov}(G) \leq O\left(n^{3}\right)$ which is way off from the actual value $\operatorname{cov}(G)=\Theta(n \log n)$ (since this is just the coupon collector problem).

12.6 Mathews Bound

Theorem 12.8 (Mathews Bound). If $G=(V, E)$ is an unweighted connected graph and $R_{\max }:=\max _{x, y \in V} \operatorname{Reff}(x, y)$ is the maximum pairwise effective resistance in G, then

$$
|E| R_{\max } \leq \operatorname{cov}(G) \leq O(\log n)|E| R_{\max }
$$

Proof. One direction is straightforward:

$$
\operatorname{cov}(G) \geq \max H_{u, v} \geq \frac{1}{2} \max _{u, v} C_{u, v} \geq \frac{1}{2}|E| \max \operatorname{Reff}(u, v)=|E| R_{\max }
$$

For the other direction, we will examine a random walk of length $2 c|E| R_{\max } \log n$ divided into $\log n$ epochs of length $2 c|E| R_{\max }$. Note that for any vertex v and any epoch i, we have

$$
\mathbb{P}[v \text { unvisited in epoch } i] \leq \frac{1}{c}
$$

This is because no matter what vertex is the first of epoch i, we know that the hitting time to v is at most $\max _{u} H_{u, v} \leq \max _{u} C_{u, v}=2|E| R_{\max }$. Now Markov's inequality tells us that the probability it takes more than $2 c|E| R_{\text {max }}$ steps to hit v is at most $1 / c$. Therefore, the probability that we don't visit v in any epoch is at most $c^{-\log n} \leq n^{-\log c}$, and by a union bound, the probability that there is some vertex left unvisited after all the epochs is at most $n^{1-\log c}$. We conclude that

$$
\operatorname{cov}(G) \leq 2 c|E| R_{\max } \log n+n^{1-\log c} n^{3}
$$

where we have used the weak upper bound on the cover time provided by Theorem 12.7. Choosing c to be a large enough constant makes the second term negligible, yielding

$$
\operatorname{cov}(G) \leq O\left(|E| R_{\max } \log n\right)
$$

as desired.

