CSE 525: Randomized Algorithms Spring 2023

Lecture 11: Effective Resistance and Simple Random Walks
Lecturer: Shayan Oveis Gharan May 2nd

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we overview the connection of the effective resistance and simple random walks in a graph.

11.1 Electrical Flows

The notion of electrical flows arises naturally when we treat our graph as a resistor network. Given a graph
G = (V, E) with weights w(.) on the edges, we replace each edge e with a resistance of resistor 1/w(e). In
other words, think of w(e) as the conductance of the edge e. In this lecture we study how electricity flows
in such a network.

Now, we write two underlying properties of electrical flows. The first one is the flow conservation property.
Say we are sending one unit of flow from s to t. The flow conservation property says that for any vertex
v # 8, t, the sum of the flows into v is zero, this sum is +1 for s and —1 for t. For any edge e = {u, v} we
fix an arbitrary orientation say u — v. We let z(e) be the flow along edge e in that direction, i.e., z(e) is
non-negative if electricity is going from u to v and it is non-positive otherwise.

Let 6~ (v) be the neighbors u of v where the edge {u,v} is oriented from u to v, and 6 (v) be the rest of the
neighbors of v. Then,

+1 ifo=t
Z x(e) — Z z(e) =< -1 ifv=s
ucdt(v) u€ds= (v) 0  otherwise.
We can rewrite the above equality as follows
BTz = by, (11.1)

where B € RF*V is the edge adjacency matrix, i.e., the e = u — v-th row of B is b, = 1, — 1,,. Similarly,
bs,t - 15 - 1t-

The second property is the Ohm’s law. This property implies that the electrical flows are potential flows.
That is, if = is an electrical flow, then we can assign potentials p : V' — R such that for any edge e = u — v,

z(e) = w(e) - (p(u) — p(v)),

where w is the vector of conductances or inverse resistances. We use W € RFXF to denote the diagonal
matrix where for each edge e, W(e,e) = w(e). We can rewrite the above equality as follows:

x =W Bp. (11.2)

Putting (11.1) and (11.2) together we get

BTWBp = Lgp = bs ;. (11.3)
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Figure 11.1: In this example if we send one unit of flow form s to ¢ then 2/3 of the flow goes along the edge
e and 1/3 goes through f, f'. Therefore, the potential difference between the endpoints of edges f is 1/3.

To see that first identity note that for any edge u — v, bu,vbﬂv = L. is the Lapacian of e, so webuﬁvbgv is
the weighted Laplacian of e. Summing over all edges of G we obtain the Laplacian of the graph Lg.

Note that L¢ is in general not invertible since L1 = 0. But if G is connected we can write Lg = Z?:Z )\iviviT
where A; > 0 and (v;,1) = 0 for all ¢ > 2. Then,

n

1
LI; = Z ;viviT.

i=2 "
Since (bs¢,1) = 0, there is a unique solution to the equation Lgp = bs 4,

p=Libss. (11.4)

The above argument naturally extends to any ”demand” vector b (for the electrical flow) as long as (b,1) = 0.

11.2 Energy

Say a flow y : E — R is feasible if it satisfies the flow conservation property, i.e., (11.1). The energy of a
(feasible) flow y is defined as follows:

)

Note that since W is a diagonal matrix, its inverse is simply the inverse of every element in the diagonal.

) = 3 Uk =y, (115)
ecll

The energy can be seen as the £3 norm of a flow. Analogously, one can define the £, norm of a feasible flow

y as follows:
1/r
(eEE >

It turns out that among all feasible flows that send one unit of flow from s to ¢, the electrical flow is the
one with the smallest energy (or the smallest 5 norm). To put this into perspective, in the maximum flow
problem one is looking for a feasible flow from s to ¢ that with the smallest /. norm.

yle)
w(e)

Lemma 11.1 (Thompson’s Law). For any pair of vertices s,t, among all the flows that send one unit of
flow from s to the t, the electrical flow has the smallest energy.

Proof. Let = be the electrical flow. It follows by (11.2) and (11.4) that

@ =WBLb, ;.
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Therefore, the energy of x is equal to

cTW g
bl LLBTWW W BLLb,
= oI,LLbL,. (11.6)

()

Now, let y be any feasible flow that sends one unit of flow from s to t, i.e., BTy = b, ;. Therefore,

E(x) = yTBL]LcBTy.

Now, all we need to show is that the above quantity is at most yTW~'y. Say, z = W~1/2y. We show
E(x) = zTW1/QBLEBTW1/22 < 2Tz =yTWly.
To show that above inequality it is enough to show that
WY2BLLBTWY? < I.
This is proved in Lemma 11.2 below. O

Lemma 11.2 (Spielman and Srivastava [SS11]). The matriz Y = WY/2BLLBTWY/2 is a projection matriz,
ie,Y2=Y. So, Y <1I.

Proof.
YYT = WY2BLLBTWY2W/2BLLBTW!/?
= WY2BLLLoLLBTW!/?
WY2BLLBTWY? =Y.
Therefore all of the eigenvalues of Y are 0 or 1. O

11.3 Effective Resistance

The effective resistance between a pair of vertices s, t is defined as follows
Reff(s, t) = b] ,LLbs ;. (11.7)

By (11.4), Reff(s, t) is the potential difference between s,t when we send one unit of electrical flow from s to
t. Note that Reff(s, t) is always non-negative because LE is a PSD matrix. Equivalently, by (11.6), Reff(s, t)
is the energy of the electrical flow when we send one unit of flow from s to ¢.

The terminology of effective resistance originates from the following observation: If one removes all vertices
of G except s,t and replaces the whole network with a resistance of resistor Reff(s, t) between s, t, then, the
energy (and the potential difference) of all electrical flows between s,t remains invariant.

The effective resistance of an edge e = {u,v} is usually defined as the effective resistance between its
endpoints. It turns out that if G is an unweighted graph, then the effective resistance of each edge is the
probability that the edge is chosen in a uniform spanning tree distribution.
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11.3.1 Properties of Effective Resistance

Lemma 11.3 (Metric Property). For any triple of vertices s,t,u,

Reff(s,t) + Reff(t, u) > Refl(s, u).

Proof. By (11.7),

Reff(s,u) = b;uLEbsm
= (bs,t + bt,u)TLTc(bs,t + bt,u)
= bI,Llbsy+b] by, + 207 Liby .
= Reff(s, t) + Reff(t,u) + 207 , L by .-
So, we just need to show that the last term in the RHS is non-positive. The last term is equal to p(t) — p(u)

when we send one unit of flow from s to t. But, this means that ¢ has the lowest potential in the network,
so p(u) > p(t) as required. O

Lemma 11.4 (Rayleigh Monotonicity Property). For a weight function w : E — Ry let Reff,(.,.) be the
effective resistance function when the conductance of each edge e € E is w(e). For any w,w’ such that
w < w and any s,t €V,

Reff,, (s,t) > Refly/ (s, t).

Proof. Let x be the one unit electrical flow from s to ¢t with respect to w. Since w < w’,

Reff, (s5,6) = 3 252) >y Z%'

ecE ecE

Since z is a feasible flow that sends one unit of flow from s to ¢, by Lemma 11.1, the RHS is at least the
energy of the electrical flow that sends one unit from s to ¢t w.r.t. w'. O

Lemma 11.5 (Convexity). The effective resistance is convex w.r.t. the conductances and is concave w.r.t.
resistances. In particular, for any s,t,

1
i(Reffl/wl(s,t)—|—Reff1/w2(s,t)) < Reffy)(wy4ws) (5, 1). (11.8)

1
5 (Reffu, (5.1) + Reffuy (5,8)) > Reffu, ua)/2(5: 1) (11.9)

11.3.2 Bounding the Effective Resistance

77 gives a simple method to upper bound the effective resistance of a pair of vertices: All we need to do is
to find a flow from s to t of small £3 energy. Conversely, the following lemma gives a lower-bound on the
effective resistance of a pair of vertices.

Lemma 11.6 (Nash Williams Inequality). Let S1,S2,...,Sx €V such that for all1 <i <k, s € S;;t ¢ S;.
If for all1 <i < j <k, E(S;,S;) NE(S},S;) =0, then

k

Reff(s,t) > Z !

i=1 ZeEE(SuE) w(e) .
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Proof. Suppose x sends one unit of flow from s to t. We lower bound &(x) with the expression in the RHS.

Since the cuts corresponding to S, ..., Sk are disjoint, we can write
k
SNPIE
w(e
L & W

Therefore, it is enough to show that for each 1 < i < k,

3 z(e)’ 17w . (11.10)

e€E(S;,5;)

Since (S;, S;) separates s,t, D ec B(S:,57) |z(e)| > 1. Therefore, by Cauchy-Schwarz inequality,

2

|z(e)|
E -y w(e)
cen, s V)

<X ) T e

e€E(S:,5;) ecE(S;,5;)

—
IN

This proves (11.10) and completes the proof of the lemma. O

As a simple application of the above lemma we can show that in a \/n X \/n grid there is a pair of vertices
s,t such that Reff(s,t) > Q(log(n)).

Next, we discuss methods for upper bounding the effective resistance between a pair of vertices s,t. Note
that to upper bound the effective resistance it is enough to construct a feasible flow that sends one unit of
flow from s to t, then the energy of the flow will give an upper bound on Reff(s, t).

Suppose there are k edge disjoint paths each of length at most ¢ from s to t. Then we can construct x by
sending 1/k amount of flow on each path and

_wM

Unfortunately, we may not be able to find many edge disjoint paths between s,¢ even though Refl(s,t) is
small. For example, in a k-dimensional hypercube there are at most k edge disjoint paths between each pair
of vertices because the degree of each vertex is k. But because the length of each path between s = 00...0
and t = 11...1 is at least k, the best upper bound that we can get is O(1).

11.4 Hitting Time

Consider a simple random walk on a (weighted) graph G, that is at a given vertex u it goes to random
neighbor v with probability proportional to w, ,, i.e.,

Wy, v

dy(u)’

P[Xl :’U|X0 :’LL] =
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where dy,(u) = >,/ Wu,o is the weighted degree of u. In this section we study the hitting time: for two
vertices u,v € V, we define the hitting time H, , from u to v as the expected number of steps for the random
walk to hit v (for the first time) when started at u. Formally, define the random variable

T =min{t >0: X; = v}.
Then H, , = E[T|Xo = u]. Note that his quantity is not necessarily symmetric, i.e., Hy , # H,,, in general.

Lemma 11.7. Let b be the vector which injects d,,(u) unit at any vertex u and extracts d,,(V') at v, and let
p be the corresponding potential vector. For any verter u # v,

H, = p(u) —p(v).

Proof. Fix a vertex v, and let h : V' — R>0 be the hitting time vector. Then, for any u # v, we can write
the following system of linear equations for the Hitting time:

h(u) =1+

Equivalently,

du(w) = w0 (h(w) = h(u)) = Lah(u)
Adding up the above equalities for u # v we obtain,

dw(V) —dy(v) = Zwu/,1)(_h(v) + h(ul))v

i.e., the constraint for v is redundant.

Now, if we consider the demand vector b = d,, — 1,d,,(V), i.e., we inject d,,(u) at any vertex u € V and we
extra all the flow at v and solve for p then p exactly satisfies all of the above equations:

Lc;p:b

As alluded to before these equations have a unique solution (when the graph is connected) up to a shift,
i.e., if h is a solution then so is h + ol for any a € R. So, we add one extra constraint that h(v) = 0.
Equivalently, p(u) — p(v) = h(v) — h(u) = h(v) as desired.

O
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