
CSE 525: Randomized Algorithms Spring 2023

Lecture 11: Effective Resistance and Simple Random Walks
Lecturer: Shayan Oveis Gharan May 2nd

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we overview the connection of the effective resistance and simple random walks in a graph.

11.1 Electrical Flows

The notion of electrical flows arises naturally when we treat our graph as a resistor network. Given a graph
G = (V,E) with weights w(.) on the edges, we replace each edge e with a resistance of resistor 1/w(e). In
other words, think of w(e) as the conductance of the edge e. In this lecture we study how electricity flows
in such a network.

Now, we write two underlying properties of electrical flows. The first one is the flow conservation property.
Say we are sending one unit of flow from s to t. The flow conservation property says that for any vertex
v ̸= s, t, the sum of the flows into v is zero, this sum is +1 for s and −1 for t. For any edge e = {u, v} we
fix an arbitrary orientation say u → v. We let x(e) be the flow along edge e in that direction, i.e., x(e) is
non-negative if electricity is going from u to v and it is non-positive otherwise.

Let δ−(v) be the neighbors u of v where the edge {u, v} is oriented from u to v, and δ+(v) be the rest of the
neighbors of v. Then,

∑
u∈δ+(v)

x(e)−
∑

u∈δ−(v)

x(e) =


+1 if v = t

−1 if v = s

0 otherwise.

We can rewrite the above equality as follows

B⊺x = bs,t, (11.1)

where B ∈ RE×V is the edge adjacency matrix, i.e., the e = u → v-th row of B is be = 1u − 1v. Similarly,
bs,t = 1s − 1t.

The second property is the Ohm’s law. This property implies that the electrical flows are potential flows.
That is, if x is an electrical flow, then we can assign potentials p : V → R such that for any edge e = u → v,

x(e) = w(e) · (p(u)− p(v)),

where w is the vector of conductances or inverse resistances. We use W ∈ RE×E to denote the diagonal
matrix where for each edge e, W (e, e) = w(e). We can rewrite the above equality as follows:

x = WBp. (11.2)

Putting (11.1) and (11.2) together we get

B⊺WBp = LGp = bs,t. (11.3)
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Figure 11.1: In this example if we send one unit of flow form s to t then 2/3 of the flow goes along the edge
e and 1/3 goes through f, f ′. Therefore, the potential difference between the endpoints of edges f is 1/3.

To see that first identity note that for any edge u → v, bu,vb
T
u,v = Le is the Lapacian of e, so webu,vb

T
u,v is

the weighted Laplacian of e. Summing over all edges of G we obtain the Laplacian of the graph LG.

Note that LG is in general not invertible since LG1 = 0. But ifG is connected we can write LG =
∑n

i=2 λiviv
T
i

where λi > 0 and ⟨vi,1⟩ = 0 for all i ≥ 2. Then,

L†
G =

n∑
i=2

1

λi
viv

T
i .

Since ⟨bs,t,1⟩ = 0, there is a unique solution to the equation LGp = bs,t,

p = L†
Gbs,t. (11.4)

The above argument naturally extends to any ”demand” vector b (for the electrical flow) as long as ⟨b,1⟩ = 0.

11.2 Energy

Say a flow y : E → R is feasible if it satisfies the flow conservation property, i.e., (11.1). The energy of a
(feasible) flow y is defined as follows:

E(y) =
∑
e∈E

y(e)2

w(e)
= y⊺W−1y, (11.5)

Note that since W is a diagonal matrix, its inverse is simply the inverse of every element in the diagonal.

The energy can be seen as the ℓ22 norm of a flow. Analogously, one can define the ℓr norm of a feasible flow
y as follows: (∑

e∈E

y(e)r

w(e)

)1/r

.

It turns out that among all feasible flows that send one unit of flow from s to t, the electrical flow is the
one with the smallest energy (or the smallest ℓ2 norm). To put this into perspective, in the maximum flow
problem one is looking for a feasible flow from s to t that with the smallest ℓ∞ norm.

Lemma 11.1 (Thompson’s Law). For any pair of vertices s, t, among all the flows that send one unit of
flow from s to the t, the electrical flow has the smallest energy.

Proof. Let x be the electrical flow. It follows by (11.2) and (11.4) that

x = WBL†
Gbs,t.
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Therefore, the energy of x is equal to

E(x) = x⊺W−1x

= b⊺s,tL
†
GB

⊺WW−1WBL†
Gbs,t

= b⊺s,tL
†
Gb

⊺
s,t. (11.6)

Now, let y be any feasible flow that sends one unit of flow from s to t, i.e., B⊺y = bs,t. Therefore,

E(x) = y⊺BL†
GB

⊺y.

Now, all we need to show is that the above quantity is at most y⊺W−1y. Say, z = W−1/2y. We show

E(x) = z⊺W 1/2BL†
GB

⊺W 1/2z ≤ z⊺z = y⊺W−1y.

To show that above inequality it is enough to show that

W 1/2BL†
GB

⊺W 1/2 ⪯ I.

This is proved in Lemma 11.2 below.

Lemma 11.2 (Spielman and Srivastava [SS11]). The matrix Y = W 1/2BL†
GB

⊺W 1/2 is a projection matrix,
i.e., Y 2 = Y . So, Y ⪯ I.

Proof.

Y Y ⊺ = W 1/2BL†
GB

⊺W 1/2W 1/2BL†
GB

⊺W 1/2

= W 1/2BL†
GLGL

†
GB

⊺W 1/2

= W 1/2BL†
GB

⊺W 1/2 = Y.

Therefore all of the eigenvalues of Y are 0 or 1.

11.3 Effective Resistance

The effective resistance between a pair of vertices s, t is defined as follows

Reff(s, t) = b⊺s,tL
†
Gbs,t. (11.7)

By (11.4), Reff(s, t) is the potential difference between s, t when we send one unit of electrical flow from s to

t. Note that Reff(s, t) is always non-negative because L†
G is a PSD matrix. Equivalently, by (11.6), Reff(s, t)

is the energy of the electrical flow when we send one unit of flow from s to t.

The terminology of effective resistance originates from the following observation: If one removes all vertices
of G except s, t and replaces the whole network with a resistance of resistor Reff(s, t) between s, t, then, the
energy (and the potential difference) of all electrical flows between s, t remains invariant.

The effective resistance of an edge e = {u, v} is usually defined as the effective resistance between its
endpoints. It turns out that if G is an unweighted graph, then the effective resistance of each edge is the
probability that the edge is chosen in a uniform spanning tree distribution.
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11.3.1 Properties of Effective Resistance

Lemma 11.3 (Metric Property). For any triple of vertices s, t, u,

Reff(s, t) + Reff(t, u) ≥ Reff(s, u).

Proof. By (11.7),

Reff(s, u) = b⊺s,uL
†
Gbs,u

= (bs,t + bt,u)
⊺L†

G(bs,t + bt,u)

= b⊺s,tL
†
Gbs,t + b⊺t,uL

†
Gbt,u + 2b⊺s,tL

†
Gbt,u

= Reff(s, t) + Reff(t, u) + 2b⊺s,tL
†
Gbt,u.

So, we just need to show that the last term in the RHS is non-positive. The last term is equal to p(t)− p(u)
when we send one unit of flow from s to t. But, this means that t has the lowest potential in the network,
so p(u) ≥ p(t) as required.

Lemma 11.4 (Rayleigh Monotonicity Property). For a weight function w : E → R+ let Reffw(., .) be the
effective resistance function when the conductance of each edge e ∈ E is w(e). For any w,w′ such that
w ≤ w′ and any s, t ∈ V ,

Reffw(s, t) ≥ Reffw′(s, t).

Proof. Let x be the one unit electrical flow from s to t with respect to w. Since w ≤ w′,

Reffw(s, t) =
∑
e∈E

x(e)2

w(e)
≥
∑
e∈E

x(e)2

w′(e)
.

Since x is a feasible flow that sends one unit of flow from s to t, by Lemma 11.1, the RHS is at least the
energy of the electrical flow that sends one unit from s to t w.r.t. w′.

Lemma 11.5 (Convexity). The effective resistance is convex w.r.t. the conductances and is concave w.r.t.
resistances. In particular, for any s, t,

1

2
(Reff1/w1

(s, t) + Reff1/w2
(s, t)) ≤ Reff2/(w1+w2)(s, t). (11.8)

1

2
(Reffw1

(s, t) + Reffw2
(s, t)) ≥ Reff(w1+w2)/2(s, t), (11.9)

11.3.2 Bounding the Effective Resistance

?? gives a simple method to upper bound the effective resistance of a pair of vertices: All we need to do is
to find a flow from s to t of small ℓ22 energy. Conversely, the following lemma gives a lower-bound on the
effective resistance of a pair of vertices.

Lemma 11.6 (Nash Williams Inequality). Let S1, S2, . . . , Sk ⊆ V such that for all 1 ≤ i ≤ k, s ∈ Si, t /∈ Si.
If for all 1 ≤ i < j ≤ k, E(Si, Si) ∩ E(Sj , Sj) = ∅, then

Reff(s, t) ≥
k∑

i=1

1∑
e∈E(Si,Si)

w(e)
.
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Proof. Suppose x sends one unit of flow from s to t. We lower bound E(x) with the expression in the RHS.
Since the cuts corresponding to S1, . . . , Sk are disjoint, we can write

E(x) ≥
k∑

i=1

∑
e∈E(Si,Si)

x2(e)

w(e)
.

Therefore, it is enough to show that for each 1 ≤ i ≤ k,

∑
e∈E(Si,Si)

x(e)2

w(e)
≥ 1∑

e∈E(Si,Si)
w(e)

. (11.10)

Since (Si, Si) separates s, t,
∑

e∈E(Si,Si)
|x(e)| ≥ 1. Therefore, by Cauchy-Schwarz inequality,

1 ≤

 ∑
e∈E(Si,Si)

|x(e)|√
w(e)

·
√
w(e)

2

≤

 ∑
e∈E(Si,Si)

x(e)2

w(e)

 ·

 ∑
e∈E(Si,Si)

w(e)

 .

This proves (11.10) and completes the proof of the lemma.

As a simple application of the above lemma we can show that in a
√
n×

√
n grid there is a pair of vertices

s, t such that Reff(s, t) ≥ Ω(log(n)).

Next, we discuss methods for upper bounding the effective resistance between a pair of vertices s, t. Note
that to upper bound the effective resistance it is enough to construct a feasible flow that sends one unit of
flow from s to t, then the energy of the flow will give an upper bound on Reff(s, t).

Suppose there are k edge disjoint paths each of length at most ℓ from s to t. Then we can construct x by
sending 1/k amount of flow on each path and

E(x) ≤
k∑

i=1

∑
e∈Pi

x(e)2 =

k∑
i=1

∑
e∈Pi

1

k2
≤ kℓ

k2
.

Unfortunately, we may not be able to find many edge disjoint paths between s, t even though Reff(s, t) is
small. For example, in a k-dimensional hypercube there are at most k edge disjoint paths between each pair
of vertices because the degree of each vertex is k. But because the length of each path between s = 00 . . . 0
and t = 11 . . . 1 is at least k, the best upper bound that we can get is O(1).

11.4 Hitting Time

Consider a simple random walk on a (weighted) graph G, that is at a given vertex u it goes to random
neighbor v with probability proportional to wu,v, i.e.,

P [X1 = v|X0 = u] =
wu,v

dw(u)
,
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where dw(u) =
∑

v′∼u wu,v′ is the weighted degree of u. In this section we study the hitting time: for two
vertices u, v ∈ V , we define the hitting time Hu,v from u to v as the expected number of steps for the random
walk to hit v (for the first time) when started at u. Formally, define the random variable

T = min{t ≥ 0 : Xt = v}.

Then Hu,v = E [T |X0 = u]. Note that his quantity is not necessarily symmetric, i.e., Hu,v ̸= Hv,u in general.

Lemma 11.7. Let b be the vector which injects dw(u) unit at any vertex u and extracts dw(V ) at v, and let
p be the corresponding potential vector. For any vertex u ̸= v,

Hu,v = p(u)− p(v).

Proof. Fix a vertex v, and let h : V → R≥0 be the hitting time vector. Then, for any u ̸= v, we can write
the following system of linear equations for the Hitting time:

h(u) = 1 +
∑
u′

wu,u′

dw(u)
h(u′)

Equivalently,

dw(u) =
∑
u′

wu,u′(h(u)− h(u′)) = LGh(u)

Adding up the above equalities for u ̸= v we obtain,

dw(V )− dw(v) =
∑
u′

wu′,v(−h(v) + h(u′)),

i.e., the constraint for v is redundant.

Now, if we consider the demand vector b = dw − 1vdw(V ), i.e., we inject dw(u) at any vertex u ∈ V and we
extra all the flow at v and solve for p then p exactly satisfies all of the above equations:

LGp = b

As alluded to before these equations have a unique solution (when the graph is connected) up to a shift,
i.e., if h is a solution then so is h + α1 for any α ∈ R. So, we add one extra constraint that h(v) = 0.
Equivalently, p(u)− p(v) = h(v)− h(u) = h(v) as desired.
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