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In this lecture we study a randomized rounding method called pipage rounding method. The materials of
this lecture are based on the work of Chekuri, Vondrák and Zenklusen [CVZ10].

From a high-level point of view, one can use this method to round a fractional point in (some families of)
integral polytope, i.e., polytopes whose vertices are integer points, to a vertex while making sure that the
underlying elements are negatively correlated.

We will instantiate a method for the case of spanning trees, but the method works for a more general family
of polytopes called matroid base polytopes and beyond.

First, let us define the spanning tree polytope. Given a graph G = (V,E), the spanning tree polytope is the
convex hull of the indicator vectors, 1T ∈ RE for spanning tree T , of all spanning trees of G. Edmonds
proved that one can give a simple description of the faces of this polytope: Say we have a variable xe, for
every edge e ∈ E. Then, ∑

e∈E(S)

xe ≤ |S| − 1, ∀S ⊆ V,

∑
e

xe = |V | − 1,

xe ≥ 0, ∀e ∈ E.

(10.1)

It is not hard to see that 1T for any (integral) spanning tree T of G indeed satisfies all of the above constraints.
In particular, T can have at most |S| − 1 edges in any set S of vertices (otherwise T has a cycle). Edmonds
proved that indeed that is all one needs to check. We don’t prove here, but it is not hard to see that given
a point x ∈ RE , we can check in polynomial whether x is in the spanning tree polytope or find a violating
constraint. Because of that we can optimize any linear function (or minimize any convex function) over
this polytope. See course notes of CSE 521 for more info. In the rest of this note we use the shorthand
x(E(S)) =

∑
e∈E(S) xe.

Tight Sets Given a point x ∈ RE
≥0, we say a set S ⊆ V is a tight set, if

∑
e∈E(S) xe = |S| − 1. The

following fact is immediate:

Fact 10.1. Suppose S, T ⊆ V are two tight sets for a given x ∈ RE
≥0. Then, S ∩ T , if non-empty, is also a

tight set.

Proof. Suppose E(S ∩ T ) ̸= ∅. The claim is obvious if S ⊆ T or T ⊆ S. Since S, T are tight,

|S| − 1 + |T | − 1 = x(E(S)) + x(E(T ))

≤ x(E(S ∩ T )) + x(E(S ∪ T ))

≤ |S ∩ T | − 1 + |S ∪ T | − 1 = |S| − 1 + |T | − 1

The first inequality follows from the fact there may some edges in S ∪ T that are not in S or T , i.e., those
with one endpoint in S ∖ T and the other in T ∖ T . The second inequality follows from feasiblity of x. So
all of the inequalities must be equalities and in particular, x(E(S ∩ T )) = |S ∩ T |.
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10.1 The Pipage Rounding Method

In this section we describe the pipage rounding algorithm. Given a point x in the spanning tree polytope,
there are many ways to write x as a convex combination of the vertices of the polytope,

x =
∑
T

pT1T .

No matter which distribution we choose we always satisfy linear functions in expectations. A quantity of
interest is whether this ”rounding” introduces correlations between coordinates. In other words, if we can
use strong concentration bounds (such as multiplicative Chernoff bound) to the rounded solution. More
concretely, is it possible to write x as a distribution that is negatively correlated? We will see that yes, for
spanning trees, and more generally for any matroid this is possible.

This algorithm is first proposed by Ageev and Sviridenco [AS04] to round a fractional matching into an
integral one. Chekuri, Vondrák and Zenklusen [CVZ10] observed that a randomized version of the pipage
rounding algorithm gives a negatively correlated distribution; among other things, the method can be used
to get an O(log(n)/ log log(n)) approximation for ATSP.

In the basic version of this method we start from a fractional point x in the spanning tree polytope and we
round to an integral spanning tree in a number of steps T . Let Xi ∈ RE be our vector in the i-th step.

i) At time zero we start with the given x, X0 = x deterministically and at any i, Xi is in the spanning
tree polytope.

ii) X∞ must be an integral spanning tree. In fact, we will see that Xt for some t = poly(n) will be integral.

iii) X is a martingale: For any i,

E [Xi|X0, . . . , Xi−1] = Xi−1.

This in particular implies that for any i, E [Xi] = x, i.e., the original marginals are preserved.

iv) The most important property is negative correlation: We will see that products of coordinates of Xi

form a ”sub-martinagle”. For any set F ⊆ E and any i ≥ 1,

E

[∏
e∈F

Xi(e)

]
≤ E

[∏
e∈F

Xi−1(e)

]
.

Using induction, this property in particular implies that we have multiplicative Chernoff bound for sums
of coordinates of Xi (for any i).

Now, we are ready to describe the pipage rounding algorithm. Given Xi−1, if it is integral we are done.
Otherwise, there must be at least two non-integral coordinates. We choose the smallest tight set S with at
least two fractional elements say 0 < Xi−1(e), Xi−1(f) < 1. We consider the line 1e −1f and extend it until
we hit the faces of the polytope (see Figure 10.1). We move to one of these two points randomly such that
in expectation is Xi−1. In particular say these two points are x1, x2 (see Figure 10.1). We let Xi = x1 with
probability p and Xi = x2 with probability 1− p for p chosen such that

px1 + (1− p)x2 = Xi−1.

So, this immediately proves the martingale property.

Lemma 10.2. Xt is integral (with probability 1) for t ≥ |E|(n− 1).
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Figure 10.1: An iteration of the pipage rounding method. given the point x, we choose two variables say
x(e), x(f) and move randomly along the direction of the line that keeps the sum of x(e), x(f) invariant until
we hit the polytope, i.e., the blue crosses.

Proof. The first observations is that if a set T ⊆ V is a tight set in Xi−1 it remains a tight set in Xi. To see
that, notice in step i we only change Xi−1(e), Xi−1(f), and that Xi(e) +Xi(f) = Xi−1(e) +Xi−1(f). So,
there are the following cases:

Case 1: e, f /∈ E(T ) Then,Xi(E(T )) = Xi−1(E(T )) so T remains tight. In particular, if S ⊆ T or S∩T = ∅,
T remains tight.

Case 2: T ⊊ S This case cannot happen because S is the smallest tight set.

Case 3: Only one of e, f in T . In that case we must have E(S ∩ T ) ̸= ∅. But then by Fact 10.1, S ∩ T
was a tight set in Xi−1 so S was not the smallest tight set.

Now, consider changes in step i. By definition of the algorithm, we move Xi−1 to one of two faces x1 or x2.
In either of these point we must hit a new face of the polytope. If we hit an integrality face, for either of
e, f i.e., if Xi(e) = 1 or Xi(f) = 1 then we make progress and we have one more integral variable (observe
that once a coordinate becomes integral it remains integral. Otherwise, a new set, say T , becomes tight.
But such a T must have exactly one of e, f otherwise Xi−1(E(T )) = Xi(E(T )). So, by Fact 10.1, S ∩ T is
a (new) smaller tight set. Repeating this procedure after at most n− 1 iterations we get a tight set with a
single variable, i.e., an integer coordinate. So, all in all, the procedure gets to an integer vector in at most
(n− 1)|E| many steps.

10.2 Negative Correlation

In this section we prove property (iv) of the pipage rounding method. Fix a set F , We prove a stronger
claim,

E

[∏
e∈F

Xi(e)

∣∣∣∣Xi−1

]
≤

∏
e∈F

Xi−1(e). (10.2)

Taking expectations from both sides of the above inequality proves (iv).

Say in step i we move along the line 1f1 − 1f2 . Then, we for all e ̸= f1, f2, Xi(e) = Xi−1(e). If f1, f2 /∈ F ,
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then (10.2) holds trivially. If f1 ∈ F and f2 /∈ F , then

E

[∏
e∈F

Xi(e)

∣∣∣∣Xi−1

]
= E [Xi(f1)|Xi] ·

∏
e∈F\{f1}

Xi−1(e)

=
∏
e∈F

Xi−1(e),

where the second equality follows by the martingale property (iii).

Now, assume f1, f2 ∈ F . First, note that similar to above all we need to show is that

E [Xi(f1) ·Xi(f2)|Xi−1] ≤ Xi−1(f1) ·Xi−1(f2). (10.3)

The main observation is that Xi(f1) +Xi(f2) is invariant (w.p. 1). Therefore,

E
[
(Xi(f1) +Xi(f2))

2|Xi−1

]
= (Xi−1(f1) +Xi−1(f2))

2. (10.4)

Now, since
E
[
X2

i (f1)|Xi−1

]
≥ E [Xi(f1)|Xi−1]

2
= Xi−1(f1)

2

and similarly for f2, subtracting this from (10.4) implies (10.3). This concludes the proof of (10.2).

10.3 Conclusion

Chekuri, Vondrak and Zenklusen also introduce another algorithm that is similar to pipage rounding with
some additional properties in some aspects, called the randomized swap rounding. They extend the above
ideas to round a fractional point in the intersection of two matroids, e.g., a fractional matching in a bipartite
graph.

An open problem here is to understand further properties of the distribution of spanning trees defined by the
pipage rounding method. For example, are they negative associated? Are Lipschitz functions concentrated?
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