
 

Repeated Online Decision Making andthe Multiplicate Weights Algorithm
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Best possible result

totalreward Tmaxr4i GD

Observation this benchmark is too strong
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To make progress weaken benchmark
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Claim no good In fact no detalggood
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How well can we do with a randomised alg
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MWU algorithm
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Minimax Theorem

Let It be mxn payoff matrix for zero sumgame
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Proof g Minimax Thm using MWU thin sketch

assume a ELI I ynet scale
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Is it predictive

Penaltykicks

colplayes
goatee

h R Based on actual data on
rowplayer L 0580.95

1,417 penalty kicks fromkicker Ro 930.7 professional games in Europe

kicker Goalee
Optimalstrategies 0.38 0.62 0.42 05.8

Observed frequencies 0.40 0.60 0.423,0 577




