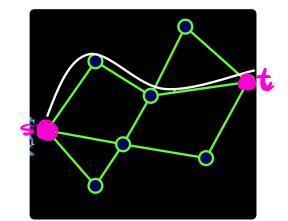
Setup: At each time step t = 1...T • a decision maken picks an action at the where $p_i = Pr(a_1 = i)$ $p_i^* = (p_i^*(1), p_i^*(a), ..., p_i^*(n))$

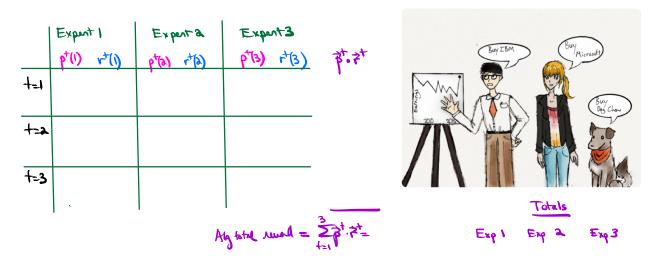


Good of alg: maximize total appreciate. = $\sum_{i=1}^{T} \sum_{j=1}^{p} p^{+}(i) r^{+}(j)$ $t \in \mathcal{F}^{+}$

Examples:

(1) Choosing aroute

D Choosing stocks to buy



Bast possible result
total neward =
$$\sum_{t=1}^{T} \max_{i} r^{t}(i)$$
 (de)

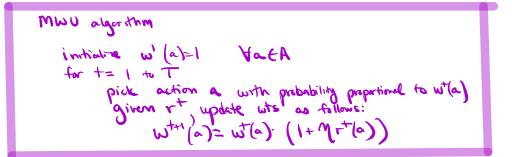
Observation: this benchmark is too strong
Ex:
$$A = \{1,2\}$$

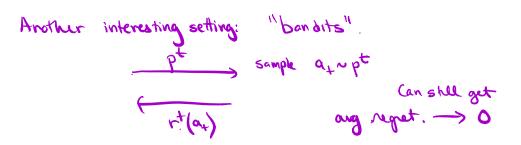
Adv: $y p^{+}(1) \ge a = \} r^{+}(1) \ge -1$
 $r^{+}(a) \ge 1$
 $y p^{+}(1) < a = \} r^{+}(1) \ge 1$
 $r^{+}(a) \ge -1$
 $F(reword) \le 0$ whereas $(t^{*}) = T$

To note progres, weaken benchmank Regret $(\vec{p}'_1,...,\vec{p}'') = \max_{a \in A} \sum_{t=1}^{t} r_t(a) - \sum_{t=1}^{t} \vec{p}' \cdot \vec{r}'_t$ Tstep regret actA t=1beat reword to the same benchmank responsible of your total use same benchman every day Aug Regret = $\frac{1}{T}$ Regret Goal: Aug regret $\rightarrow 0$ Most obvions thing to try to minimize Regret "Follow the Leaden": set $p'(i) = \int_{t=1}^{t} r_t(i) \sum_{t=1}^{t} r_t(j)$ (break ties anbihronly)

(laim: no good. In fact, no det alg good
advensary sets
$$r^{+}(a) = \int_{a}^{a} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{a} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon $\Delta = \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} y \, dg \, choses a chon(b)$$$$$$$$$$$$$$

How well can we do with a randomized edg? simple lower bound. n=2 $ret = \int (1, -1) wp \cdot t$ E[reward g any dg] =What about best action in hindsight? g H > T = 2 choose action 1 else action 2 reward g best action





Application domain	Action	Reward
medical trials	which drug to prescribe	health outcome.
web design	e.g., font color or page layout	#clicks.
content optimization	which items/articles to emphasize	#clicks.
web search	search results for a given query	1 if the user is satisfied.
advertisement	which ad to display	revenue from ads.
recommender systems	<i>e.g.</i> , which movie to watch	1 if follows recommendation
sales optimization	which products to offer at which prices	revenue.
procurement	which items to buy at which prices	#items procured
auction/market design	<i>e.g.</i> , which reserve price to use	revenue
crowdsourcing	which tasks to give to which workers,	1 if task completed
	and at which prices	at sufficient quality.
datacenter design	<i>e.g.</i> , which server to route the job to	job completion time.
Internet	e.g., which TCP settings to use?	connection quality.
radio networks	which radio frequency to use?	1 if successful transmission.
robot control	a "strategy" for a given task	job completion time.

Minimax Theorem

Let A be man payoff matrix for zero-sum game

$$\begin{bmatrix} a_{ij} : & gain g m playon uhen row playo i como
loss g col playon blayo j como como
base g col playon blayo j como
base d col playon playo j como
c$$

Let
$$\vec{X} \in \mathbb{R}^n$$
 $\tilde{\Sigma}_{Xi=1}^{Xi>0}$ be mixed strategy for row player
 $\vec{Y} \in \mathbb{R}^n$ $\tilde{\Sigma}_{Yi=1}^{Yi>0}$ be mixed strategy to all player

srbmit dish

FIGURE 2.6. Von Neumann explaining duality to Dantzig.

Proof of Minimon Then using MWU then (sketch)
(assume aij t[-1,1] yet scale]
Thought experiment
Fix E>O (eventually well take E>O)
for t=1.. T=4 ln (man(n,m))
E²
Imagine row player & col player
Using MWU alg to play
Trounds of game
=)
$$p^{\pm} q^{\pm}$$
, $t=1..T$

where in each round

row players
$$r^+ = Aq^+$$

remarks $r^+ = -(p^+)^T A$
remarks

Let
$$\hat{x} = \frac{1}{T} \sum_{i=1}^{T} \hat{f}^{\dagger}$$

 $\hat{y} = \frac{1}{T} \sum_{i=1}^{T} \hat{q}^{\dagger}$
Let $V = \frac{1}{T} \sum_{i=1}^{T} (\hat{q}^{\dagger})^{T} A \hat{q}^{\dagger}$
avg.uxp payril of rows
players over Trounds

Is it predictive?.

Penalty Kicks,

Based on a chiel data on 1417 penalty kicks from professional games in Europe

col player geolee R L 0.58 0.95 row plangs kicker R 0.93 0.7

		Kichen	Goalee	
Optimal strategies		(0.38,0.62)	(0.42,0.58)	
Observed	frequencies	(0.40, 0.60)	(0,423,0.577)	