Last time:

approx counting =\Rightarrow approx sampling

Q: given \mathcal{L} & distr \pi = (\pi_1, ..., \pi_n)

on altz \mathcal{L}

how to approx sample from this distr?

Cool idea:

- design a MC whose stationary distr
 is \pi
- show that it mixes in polynomial time
 i.e. after \(T = \text{poly}(n) \) steps
 \(\Pr(X_T = j) \approx \pi_j \) \(\forall j \in \mathcal{L} \)

Today

- another example of coupling
- martingales

Metropolis

- spectral approach
- coupling
Coupling

simple & elegant approach to bounding mixing time

Given an MC on \(\mathcal{X} \), a coupling is an MC on \(\mathcal{X} \times \mathcal{X} \) defining stochastic process \((X_t, Y_t)\) s.t.

1. each \(X_t \) & \(Y_t \) in isolation is faithful copy of MC
 \[\Pr(X_{t+1} = x | X_t = x) = p_x \]
 \[\Pr(Y_{t+1} = y | Y_t = y) = p_y \]

2. if \(X_t = Y_t \) then \(X_{t+1} = Y_{t+1} \)

Coupling Lemma

Let \((X_t, Y_t)\) be a coupling

Suppose \(\exists T \) s.t. \(\forall x,y \)

\[\Pr(X_t \neq Y_t | X_0 = x, Y_0 = y) \leq \epsilon \]

Then \(\tau(\epsilon) \leq T \)

The \(\min \) \(+ \) st. variation dist between dist over states of MC at time \(t \)

\[\frac{1}{2} \sum_{x \in \mathcal{X}} |X_t(x) - Y_t(x)| = \max_{\alpha \in \mathcal{A}} |\Pr(A) - \Pr(A')| \]
Graph coloring

Input: \(G = (V, E) \) undirected, max degree \(\Delta \), \(k \)-colorable

Markov chain:
1. Pick vertex \(v \) & color c u.a.r.
2. Recolor \(v \) with \(c \) if legal

- aperiodic
- irreducible:

\[\Delta \text{ neighbors of } v \]

\[k > \Delta + 2 \]

\[p_t > 0 \]

\[p_{ss'} > 0 \]

\[t > t^* \]

Conjecture: If \(k > \Delta + 2 \), this MC has poly mixing time.

(\text{Equation})
If $k > 4\Delta + 1$, then MC has mixing time $O(n^{\Delta})$

Coupling: X_t and Y_t cross some $v \in C$ each step

$D_t = \{ v \mid X_t$ and Y_t disagree on color of $v \}$

$A_t = V - D_t$

Here, d_t may:

Good moves ($d_t \downarrow$)

Choose $v \in D_t$

Bad moves ($d_t \uparrow$)

Choose $v \notin D_t$

Before

After

All other moves cause no change in d_t

Prob $\frac{1}{2}$ each move $= \frac{1}{kn}$

$$E[d_{t+1} | d_t] = d_t + \frac{b_t - g_t}{kn} \leq d_t + \frac{2d_t \Delta - d_t (k - 2\Delta)}{kn}$$

$$= \frac{d_t (1 + \frac{4\Delta - k}{kn})}{d_t (1 - \frac{1}{kn})}$$

Since $k > 4\Delta + 1$

$$E[d_{t+1}] = E\left[E[d_t | d_t] \right] \leq E[d_t] \left(1 - \frac{1}{kn} \right)$$

$$E[d_t] \leq d_0 \left(1 - \frac{1}{kn} \right)^t \leq d_0 e^{-\frac{tk}{n}} \leq \varepsilon$$

$t = kn \ln(n/k)$
\[\Rightarrow \text{for } T = \ln \ln \left(\frac{N}{\varepsilon} \right) \]

\[\Pr \left(X_T \neq Y_T \mid X_0 = x, Y_0 = y \right) \leq \varepsilon \Rightarrow \varepsilon(T) \leq \ln \ln \left(\frac{N}{\varepsilon} \right) \]

Bound can be improved to \(k \geq 2\Delta + 1 \) with more clever coupling see notes.
Martingales

A sequence of r.v.s \(X_0, X_1, \ldots \) is a martingale with respect to the sequence \(Y_0, Y_1, \ldots \) if \(Y_n \geq 0 \) and the following conditions hold:

- \(X_n \) is a.f.m. \(Y_0, Y_1, \ldots, Y_n \)
- \(E(\mid X_0) < \infty \)
- \(E(X_{n+1} \mid Y_0, Y_1, \ldots, Y_n) = X_n \)

Example: gambler plays sequence of fair games

- \(Y_i \): winnings on \(i \)-th game \(\quad E(Y_i) = 0 \)
- \(X_i \): gambler's total winnings at end of \(i \)-th game

\[
E(X_{i+1} \mid Y_0, Y_1, \ldots, Y_i) = E(X_i \mid Y_0, Y_1, \ldots, Y_i) + E(Y_{i+1} \mid Y_i, Y_{i-1}, \ldots, Y_0)
\]

\[
= E(X_i \mid Y_i, Y_{i-1}, \ldots) + E(Y_{i+1} \mid Y_i, Y_{i-1}, \ldots)
\]

\[= E(X_i \mid Y_i, Y_{i-1}, \ldots) + 0 \]

Martingale regardless of \(\text{amt bet each game} \), even \(Y_i \) that \(\text{amts} \) are dependent on previous results
Examples

1. Sums of independent random variables

\[\sum_{i=0}^{n} Y_i = 0 \quad \text{iid} \quad \forall k \]

Define \(X_n = \sum_{i=0}^{n} Y_i \)

\(\{X_i\} \) is a martingale w.r.t. \(\{Y_i\} \)

\[
E(X_{n+1} | Y_{0:n}) = E(X_n + Y_{n+1} | Y_{0:n}) \\
= E(X_n | Y_{0:n}) + E(Y_{n+1} | Y_{0:n}) \\
= X_n + E(Y_{n+1}) \\
= X_n
\]

2. Variance of a sum

\[\sum_{i=1}^{n} Y_i = 0 \quad \text{iid} \quad \forall k \quad E(Y_i^2) = \sigma^2 \]

Define \(X_n = (\sum_{i=1}^{n} Y_i)^2 - n\sigma^2 \)

\(\{X_i\} \) is a martingale w.r.t. \(\{Y_i\} \)

\[
E(X_{n+1} | Y_{0:n}) = E\left[\left(\sum_{i=1}^{n+1} Y_i \right)^2 - (n+1)\sigma^2 \mid Y_{0:n} \right] \\
= E\left[Y_{n+1}^2 + 2Y_{n+1}\left(\sum_{i=1}^{n} Y_i \right) + \left(\sum_{i=1}^{n} Y_i \right)^2 - (n+1)\sigma^2 \mid Y_{0:n} \right] \\
= E\left[Y_{n+1}^2 + 2Y_{n+1}\left(\sum_{i=1}^{n} Y_i \right) + \left(\sum_{i=1}^{n} Y_i \right)^2 - (n+1)\sigma^2 \mid Y_{0:n} \right] \\
= \sigma^2 \left(X_n - \sigma^2 \right) \]

\(= X_n \)
"Dubois" martingale process

\[Y_1, Y_2, \ldots \] arbitrary seq of random vars
\[X \] r.v. with finite expectation
\[X_n = E(X|Y_1, \ldots, Y_n) \] forms martingale wrt \{Y_n\}
\[X_0 = E(X) \]

\[E(X_{n+1}|Y_1, \ldots, Y_n) = E \left(E(X|Y_1, \ldots, Y_{n+1}) | Y_1, \ldots, Y_n \right) \]
\[(\star) \; E(X|Y_1, \ldots, Y_n) = X_n \]

\[E(V|W=w) = E \left[E(V|U,w) | w \right] \]
prove this \(\uparrow\)
\[\text{n.r. } \]
\[E(V|W=w) \text{ w.p. } P(W=w) \]

Example: Edge exposure martingale

\(G(n, p) \) random graph
label \(m=\binom{n}{2} \) potential edges \(e_1, e_2, \ldots, e_m \)

Let \(f(G) \) be size of largest clique in \(G \)

\[Y_j = \begin{cases} 1 & \text{edge } e_j \text{ present} \\ 0 & \text{otherwise} \end{cases} \quad \Pr(Y_j=1)=p \]

\[X_j = E[f(G) | Y_1, \ldots, Y_j] \quad X_n = E[f(G)] \quad X_0 = f(G) \]

\[E(X_j | Y_1, \ldots, Y_{j-1}) \]
Some useful facts about martingales:

1. \(E(X_n) = E(X_0) \)
 - by induction \(E(X_n|Y_0, \ldots, Y_{n-1}) = X_n \)
 - \(E[E(X_n|Y_0, \ldots, Y_{n-1})] = E(X_n) \)
 - \(= E(X_{n+1}) \)

2. Definition

 A r.v. \(T \) is called a "stopping time" wrt \(\{Y_t\} \) if
 - \(T \) takes values in \(\{0, 1, 2, \ldots\} \)
 - and \(Y_{T+n} > 0 \), the event \(\{T=n\} \) is determined by \(Y_0, Y_n \)
 - i.e. can determine \(Y_{T=n} \) or \(T\neq n \) from knowledge of \(Y_0, \ldots, Y_n \)
 - "know it when you see it"

Optional Stopping Theorem

\(\{Z_t\} \) is a martingale wrt \(\{X_t\} \)

For \(T \) a stopping time, "know it when you see it"

\(E(Z_T) = E(Z_0) \)

whenever any of the following hold
- \(Z_t \) is bounded \((\exists c \text{ s.t. } |Z_t| \leq c) \)
- \(T \) is bounded
- \(E(T) < \infty \) and \(\exists c \text{ s.t. } E(E(Z_{T+n}|X_{11}, X_n) \leq c) \)
Applications of Optional Stopping Theorem

1) unbiased r.w. on line starting at 0

\[-a \quad 0 \quad b \]

\[Y_i = \begin{cases} 1 & \text{with prob } \frac{1}{2} \\ -1 & \text{with prob } \frac{1}{2} \end{cases} \]

\[X_n = \sum_{i=1}^{n} Y_i \text{ martingale} \]

\[T = \min \{ n \mid X_n = -a \text{ or } X_n = b \} \]

\(T \) is a stopping time

Let \(\nu_a = \text{Pr}(X_n \text{ reaches } -a \text{ before reaching } b) \)

By o.s.t. \(E(X_T) = E(X_0) = 0 \)

\[E(X_T) = \nu_a (-a) + (1 - \nu_a) b = 0 \]

\[\Rightarrow \nu_a = \frac{b}{a+b} \]

2) Same unbiased r.w. on line, same \(T \)

What is \(E(T) \)?

\[Z_n = X_n - n \] is a martingale \([\text{variance of a sum } E(Y_i) = 1]\)

By o.s.t. \(E(Z_T) = E(Z_0) = 0 \)

\[E(Z_T) = \left(\nu_a a^2 + (1 - \nu_a) b^2 \right) - E(T) = 0 \]

\[E(T) = ab \]
Same questions: biased r.v.

\[Y_i = \begin{cases} +1 & \text{p} \\ -1 & \text{q} \end{cases} \quad p > q \quad (=1-p) \]

\[X_n = \frac{1}{n} \sum_{i=1}^{n} Y_i - n(q-p) \]

\[X_n = \begin{pmatrix} q \end{pmatrix}^{\frac{1}{n}} Y_i ; \quad X_0 = 1 \]

\[T = \min \left\{ n \mid \frac{1}{n} \sum_{i=1}^{n} Y_i = a \quad \text{or} \quad b \right\} \]

\[v_a = \Pr \left(\frac{1}{n} \sum_{i=1}^{n} Y_i \text{ reaches } a \text{ before } b \right) \]

\[E(X_T) = E(X_0) = 1 \]

\[E(X_T) = v_a \left(\frac{q}{p} \right)^a + (1-v_a) \left(\frac{q}{p} \right)^b = 1 \]

\[= \quad v_a = \frac{1 - \left(\frac{q}{p} \right)^b}{\left(\frac{q}{p} \right)^a - \left(\frac{q}{p} \right)^b} \]

\[E(X_T) = v_a (-a) + (1-v_a) b - E(T) (q-p) = 0 \]

Does a fair coin repeatedly

\[E(\# \text{tosses till see sequence HTTH}) ? \]