Monte Carlo Methods

collection of tools for entimating values three sampling & estimation

(E, S) Approximation

A randomized all gives an (E,E) approx for value V if the antput X of the alg satisfies Pr(1X-V1 > E1V1) = 5

Monte Cerlo Thm

Let
$$X_{i,j}X_{a_1\cdots,j}X_m$$
 iid. Bernaulli with $E(X_i) = M$
If $m \ge \frac{3 \ln(\frac{2}{6})}{\epsilon^2 m}$ then
 $P(\left(\frac{1}{m}, \frac{m}{\epsilon_i}X_i - M\right) \ge \epsilon M) \le \delta$ Pf; Church bounds

Fully polynomial randomized approx scheme FPRAS

 α randomized alg for which, given an input x and any parameters $\epsilon & \delta & with & 0 < \epsilon, \ell < 1$, the alg outputs an (ϵ, δ) approx to V(x)in time poly in ϵ , ln ϵ & size g input

Note: suffices to take
$$S = \frac{1}{4}$$

because easy to boost error prob:
Run $k = 16 \log(\frac{2}{5})$ trials wern-prob $\frac{1}{4} \implies y_{1,3}y_{1,...,9}x_{1,...,9}x_{2,...}$
Let $m = median(y_{1,...,9}x_{2,...})$
Then $Pr(m \notin (1 \pm \epsilon) V(x)) \leq \delta$ by Chennell

Want to sample from some set (e.g. ISs of graph G)
where TT is desired dustribution
$$TT_T = Pr(ontput IS I)$$

(given TT uniform distr.)

Pf Want estimate
$$\overline{\Lambda}$$
 of $|\mathcal{N}(G)|$
 $Pr(|\mathcal{N}-|\mathcal{N}(G)|) \ge \varepsilon |\mathcal{N}(G)|) \le \varepsilon$

$$G=(V_{i}E) = e_{i}e_{a_{1}\cdots, e_{n}} \text{ anbihany ordering of adges}$$

$$E_{i} = \{e_{i}e_{a_{1}\cdots, e_{i}}\} \quad G_{i} = (V_{i}E_{i}) \quad G_{n}=G \quad G_{0}=(V_{i}e_{i})$$

$$\Omega(G_{i}): \text{ set } g \text{ ISs in } G_{i}:$$

$$|\mathcal{N}(G_{i})| = \frac{|\mathcal{N}(G_{m})|}{|\mathcal{N}(G_{m})|} \times \frac{|\mathcal{N}(G_{m})|}{|\mathcal{N}(G_{$$

Observation:
$$\frac{1}{2} \leq r' \leq 1$$

 G_i has one extra
 $edge_i$, say (u_iv)
 $\mathcal{X}(G_i) \leq \mathcal{X}(G_{i-i})$

Two errors we need to bound;

() FPAUS
$$\neq$$
 exact sampler so exp value $\neq r$:
But using, say, $\frac{\varepsilon}{6m}$ sampler $|E(\vec{r}_i) - r_i| \leq \frac{\varepsilon}{6m}$
(a) With samples we get approx to $E(\vec{r}_i)$
since r_i big $(2\frac{1}{2})$, $E(\vec{r}_i)$ big =)
Monte (arb Thrn =) $O(\frac{m^2}{\varepsilon^2} \ln(\frac{1}{\varepsilon}))$ samples suffix

From these bound
$$R = \prod_{i=1}^{n} \prod_{r=1}^{r}$$

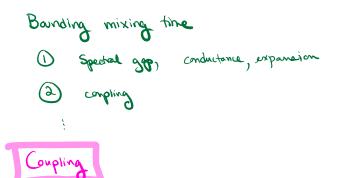
Claim: If r_i is $(\sum_{aim} \prod_{i=1}^{m})$ approx to r_i : $\forall i$
then X is (ϵ, δ) approx to $|\mathcal{V}(G)|$
 T
 $\exists r_i \in A^n$
 $i \in I$
 $r_i = \epsilon (i + \frac{\epsilon}{2m}) = \frac{r_i}{r_i} = \epsilon (i + \frac{\epsilon}{2m})$
 $i \in \frac{r_i}{r_i} = \epsilon (i + \frac{\epsilon}{2m})$
 $i \in \frac{r_i}{r_i} = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m})$
 $i = r_i = r_i = \epsilon (i + \frac{\epsilon}{2m}) = \delta^n$

How to sample elts from a univer A with 101= n according to distri TF=(TTi, TTi) 3 Cool idea: design MC whose state space is N that has stationary district TT • simulate MC until it "mixeo" · use state at that time as sample 2 kay questions: () how to design chains up right T? Those to bound mixing time? Example: sampling indep sats uniformly from G=(V,E) states : indep sets X1: som indep set MC: choose vertex v u.a.r. from V y vext, then X+=X+h if very and can be added without violating independence then X++= X+ UV otherwise X = X · MC irreducible · I I edge them a periodic Stahonary distr Uniform (chain drubby stochestic)
 P_{I,I}¹² P_{I,I}
 F_I or of

General technique: given I and a connected graph on I define transition probs so that will have stationary distrit

Metropolis Algorithm

Input:
$$\mathcal{N}_{i}$$
 connected graph $G=(\mathcal{R}_{i}E)$, T s.t. $\sum_{i\in\mathcal{N}} \overline{T}_{i}=1$, $\overline{T}_{i}>0$



total variation distance between 2 distrib on some sample space IL

$$||D_1 - D_2||_{TV} = \frac{L}{2} \sum_{x \in \mathcal{X}} |D_1(x) - D_2(x)| = \max_{A \in \mathcal{X}} |D_1(A) - D_2(A)|$$

$$A \in \mathcal{X}$$

$$||D_1 - D_2||_{TV} = \min_{A \in \mathcal{X}} and a = blue$$

$$\mathcal{N}$$

Common dyng mixing time $T(\varepsilon)$ $T(\varepsilon) = \min \{t \mid ||p^t - \pi||_{tv} \le \varepsilon\}$

say MC is apidly mixing of T(E) polynomial in log 1.4 and log (2) (we know this is related to spectral gap)

(appling Lemma Let
$$(X_{t}, Y_{t})$$
 be a compling
Suppose $\exists T = t$. $\forall x, y$
 $Pr(X_{t} \neq Y_{t} \mid X_{o} = x, Y_{o} = y) \leq E$
Then $T(E) \leq T$

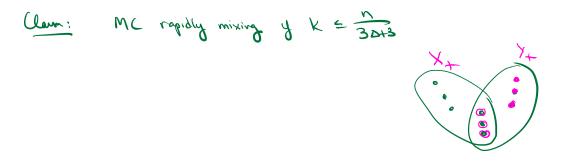
Examples: () Random walk on hypercube N=2 nodes in each step, choose random coordinate i, random but bego, ly charge it but to b

N

Draup sets of dixed size k here distances may T

Chain: choose vertex VEX, u.a.r. & a vertex WEV u.a.r.

If we X_{t} & X_{t} -v+w indep then $X_{t+1} = X_{t}$ -v+w else $X_{t+1} = X_{t}$



×