Finite Markar Chains
\& Randm walk

Today

- inoro Markw chains
- Algarithms

2-SAT
bipartle matching in d-reqular goph

- randow walks on
gaphs

2-SAT Algorithm

- stant ul initial assignmert
- Repeat up to $100 n^{2}$ times untl all clanes are satigfied chovse an anbitrang lanse that is not satisfoa
pick a variable in that clause at random \& swith its value
- Repeat picatiogying assegnment y found; else retionn "unsatisfiable"

How to analyze?
FIX satifying assegnment S
Think of alg as randern walk on lime

Finite Markov Chains

- random walk on directed graph
- each vertex is a "state" g MC.
- each arc describes corresponding transition pebability

1
2
3
3 $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right)$

Use X_{t} to dene state at time t

$$
\operatorname{Pr}\left(X_{t+1}=j \mid X_{t}=i\right)=\operatorname{pij}
$$

$$
p=\left(p_{i s}\right)
$$

transition prob matrix
$\vec{p} \vec{p}^{t}=\left(p_{0}^{t}, p_{0}^{t}, \ldots, p_{n}^{t}\right)$ describes prob distr oren stated at fine

$$
p_{i}^{t}=\operatorname{Pr}\left(x_{t}-i\right)
$$

$\vec{p}^{0}=(1,0, \ldots 0)$ means start in state i
$\vec{p}^{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ means stent in uniformly random state

Irreducible Markov chain corresponding graph strongly connected
period of state $\left.i=\operatorname{gcd}\{n \geq 1\} p_{i i}^{n}>0\right\}$
Markov chain is apeniodic of peniod of every state is 1
All Markov chains we will considen will be finite, irreducible \& aperiodic

$$
\Rightarrow \exists N>0 \text { sit. } p^{n} \text { strictly positive } \forall n \geqslant N
$$

A stationary disth $\vec{\pi}$ g a M.C. is a prab distm s.t.

$$
\forall_{j} \underbrace{\vec{\pi}=\pi^{0} P}_{\pi_{j}=\sum_{i} \pi_{i} p_{i j}}
$$

"fixed point"

Fundamental Thm of Markw Chains
For any fincte, irreducible, aperidic MC
(1) I stationary distm $\vec{\pi} \quad\left(\right.$ wim $\left.\pi_{i}>0 V_{i}\right)$
(d) $\vec{\pi}$ is unique
(3) $\pi_{i}=\frac{1}{h_{i, i}}$

Notation
(4) $\forall_{i, j} \lim _{n \rightarrow \infty} P_{i j}^{t}=\pi_{j}$

$$
\begin{aligned}
& T_{i j}=\min _{t=1}\left\{x_{t} j i \mid x_{0}-i\right\} \\
& h_{i j}=E\left(H_{i j}\right) \\
& h_{i i}=\text { expected firt } \\
& \text { returntime. }
\end{aligned}
$$

Maximum Matching in Regular Bipartite Graphs

By Hall's Manage Thy regular bipartite gaplo always have pandect matching

Traditional approach: augmenting path af repeatedly find ore: con be done in $O(\mathrm{~m})$ steps using BFS

Prior to this bestalg $O(m)$

Random walk based alg

Random welles on graphs
$G=(V, E)$ undirected graph.

Some interesting questions:

1) What is limiting dist'n grandam walk?
2) How long desist take before the walk approaches the limiting distr?
3) Starting from vertex s, what is the exp $\# g$ skeps to first reach t ?
4) How long does it take to reach every vertex at least once?
