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2 SAT Algorithm

start y initial assignment
Repeat upto LER times until all clauses are satisfied

choose an arbitrary clause that is not satisfied
pick a variable in that clause atrandom switchits value

Report satisfying assignment yfound else return unsatisfiable

How to analyze
Fix satisfying assignment 5

Think of alg as random walk on line
nvariables
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FiniteMarkov Chains

random walk on directedgraph
eachvertex is a state of me
each arc describescorresponding transition probability

TransitionProbMatrix

UseXf to denote state attimet
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All Markov chains we will consider will be finite
irreducible aperiodic
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Fundamental Thm of Marker Chains

For any finite irreducible aperiodic MC
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MaximumMatching in Regular Bipartite Graphs regular was allvertices

havesame degree d

By Hall's MarriageThm regularbipartite
graphs always have perfect matching
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Traditionalapproach augmenting pathalg
repeatedly find one can bedonein 0 m steps

using BFS
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Random walk based alg Find AP usingrandomwalk
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contract matched edges
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Algi do hw stating fun still get backto S
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drop fire to go hm i matched vertices to it I
watchedvertices
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Random walks on graphs

G V E undirected graph

Some interesting questions
1 whatis limitingdistisofrandomwalk

2 Howlong doesit take before the walk approaches thelimitingdish's

3 Starting from vertex s what is the exp ofsteps tofirst reach t

4 How long does it take to reacheveryvertex at least once


