Finite Markor Chains
\& Randm walls

Today

- imvo Markew chains
- Agarthnms

2-SAT
biparimenathing ind-requer gop

- randow walke on

2-SnT Algorithm

- stant ul initial assignmert
- Repeat up to $180 n^{2}$ times untl all clanes are satigfied chovse an anbitrang lanse that is not satisfoa pick a variable in that clause at random \& swith its value
- Reperest satiogying assignnent y found; else retrunn "unsatisfiable"

How to analyze?
Fix satifying assegnment S
Think of alg as randern walk on line n varibles.

Fix satiofying assignment.

state fvens on which current assigument agras with S
X_{t} : position oftent steps max to $X_{t}=1$ or $X_{t}+1$

$$
\left.\operatorname{Pr}\left(X_{t+1}=i+1\right) X_{t}=i\right) \geqslant \frac{1}{2} \quad=\frac{1}{2}
$$

sweed when $X_{f}=n$
h_{j} = expected \#steps for riw torech n staning from posith ;

$$
\begin{gathered}
h_{j}=\frac{1}{2} h_{j+1}+\frac{1}{a} h_{j-1}+1 \Rightarrow h_{j}-h_{j+1}=h_{j-1}-h_{j}+2 \\
h_{n}=0 \\
h_{0}=1+h_{1} \Longrightarrow \quad h_{0}-h_{1}=1
\end{gathered}
$$

By indure

$$
\begin{gathered}
h_{0}=h_{0}-h_{n}=\sum_{i=0}^{n-1} h_{i}-h_{i+1}=\sum_{i=0}^{n-1}(2 j+1) \\
=n^{2}
\end{gathered}
$$

Pr (taw $\left.>2 n^{2}\right)=\frac{1}{2}$
$150 n^{2} 150$ trials Pribfalen $\leq \frac{1}{2^{50}}$

Finite Markov Chains

- random walk on directed graph
- each vertex is a "state" of MC.
- each ans describes corresponding transition pebability

1
1
2
3
3 $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}\end{array}\right)$

Transina Prob Matrix

Use X_{t} to dance state at time t

$$
\operatorname{Pr}\left(x_{t+1}=j \mid x_{t}=i\right)=\operatorname{pij}
$$

$$
p=\left(p_{i s}\right)
$$

transition prob matrix
$\vec{p} \vec{p}^{t}=\left(p_{p}^{t}, p_{0}^{t}, \ldots, p_{n}^{t}\right)$ desuibes prob distr oven stated at fine

$$
p_{i}^{t}=\operatorname{Pr}\left(x_{t}-i\right)
$$

$\vec{p}^{0}=(1,0, \ldots 0)$ means start in state 1
$\vec{P}^{0}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ mans stunt in uniformly random state

$$
\begin{aligned}
& ++1 \\
& p_{j}
\end{aligned}=\sum_{i=1}^{n} p_{i}^{t} p_{i j}
$$

Irreducible Markov chain $=$ corresponding graph strongly connected
period of state $i=\operatorname{gcd}\left\{n \geq 1 \mid p_{i i}^{n}>0\right\}$
Markov chain is apeniodic of period of every state
All Markov chains we will considen will be finite, irreducible \& aperiodic

$\Rightarrow \exists N>0$ sit. p^{n} strictly positive $\forall_{n} \geqslant N$

$$
P_{i j}^{n}=\operatorname{Prob}\left(x_{t+n}=j \mid x_{t}=i\right)
$$

A stationary disth $\vec{\pi}$ ga. M.C. is a prab distm s.t.

$$
\begin{aligned}
& \sum_{i=1}^{n} \pi=1 \\
& \vec{\pi}=\frac{\vec{\pi}}{} P^{t}
\end{aligned}
$$

$\vec{\pi}=\vec{\pi} P$

$$
\forall_{j} \quad \pi_{j}=\sum_{i} \pi_{i} p_{j}
$$

$$
\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

Fundamental Thm of Markw Chains
For any fincte, irreducible, aperidic $M C$
(1) \mathcal{F} stationary disth $\vec{\pi} \quad\left(\right.$ wim $\left.\pi_{i}>0 V_{i}\right)$
(2) $\vec{\pi}$ is unique
\Rightarrow (3) $\pi_{i}=\frac{1}{h_{i j}} \quad h_{i i}=\frac{1}{\pi_{i}} \quad$ Notation
(4) $\forall i, j \lim _{t \rightarrow \infty} P_{i,}^{t}=\pi_{j}$

$$
T_{1 j}=\min _{t \geqslant 1}\left\{x_{t} i j \mid x_{0}=i\right\}
$$

$$
h_{i j}=E\left(T_{i j}\right)
$$

$h_{i i}=\operatorname{expected}$ fist

$$
\operatorname{Pr}\left(x_{+}=j \mid x_{0}=i\right)
$$

retuntime.
apardics $3 N$ st. Vi, $\underbrace{P_{i j}^{t}}>0 \quad \forall t \geqslant N$

$$
\left(\frac{1}{4}, \frac{1}{4} \frac{4}{4}, \frac{1}{4}\right)
$$

reguear mears all venticus have save degra d.
 repeatedly find ore: can be done in $O(\mathrm{~m})$ steps
using BFS $O(m n)$
$a l y$.

Priar to this bestalg $O(m)$
m \# odye

Random walk based aly
Find AP vsing randemualk
\exists AP of \exists directal path fru top unmatchad vertux to botter unnotened ventef.

$$
d=2
$$

contract matcied edgs

$n-i$ unnetched top vinties add d edaes from s to eachumateted node on top
add ad edges for. sech unnatiund nade on buttom to t

Claim: AP in original groph to Jcyle in graph abie from s to tself

Alg: do rim. stating firs stuleget backeto s. exp tine stating tom soto get back to s

$$
h_{s s}=\frac{1}{\pi_{s}}
$$

need to and stationary distr.
Clam

$$
\begin{aligned}
\pi_{v}^{?} & =\sum_{u / u \rightarrow v} \pi_{u} \cdot p_{u v} \\
& =\sum_{u / u \rightarrow v} \frac{d^{\text {ant }(u)}}{m} \cdot \frac{1}{d^{a n t}(u)}=\sum_{u \mid u \rightarrow v} \frac{1}{m}=\frac{\operatorname{din}(v)}{m} \\
h_{s s} & =\frac{1}{\pi_{s}}=\frac{\operatorname{dont}^{(v)}}{m}
\end{aligned}
$$

Suppose in this iterate- \exists matched edges

$$
\begin{array}{rl}
d^{m+}(s) & =d(n-i) \\
m & d n+3 d(n-i) \\
\Rightarrow \quad n_{s s} & \leqslant \frac{d n+3 d(n-i)}{d(n-i)}=\frac{n}{n-j}+3
\end{array}
$$

exp the to go tom imatched veriticesto it matched vertices

$$
\frac{n}{n-i}+3
$$

$$
\text { total exp running time }=\sum_{i=0}^{n-1}\left(\frac{n}{n+i}+3\right)
$$

$$
=O(n \log n)
$$

$O(m)$
much bogie than loge
can cad self bops.

$$
\begin{gathered}
\pi=\pi{\underset{\underline{1}}{\frac{1}{2}(I+P)}} \\
\pi=\pi I
\end{gathered}
$$

