Today

· Lorasz Local Lemma

Pt Pr(X=0) = Pr(X-M>A) = m = Va(X) Egg

(or ollary: If
$$Van(X) = o(E(X))^{2}$$
 then $Pr(X>0) = 1 - o(1)$

Another
$$\lambda^{nd}$$
 moment inequality
 $Pr(X > 0) \ge \frac{(E(X))^{2}}{E(X^{2})}$

Follows from Cauchy-Schwartz

$$\begin{bmatrix} E(XY) \end{bmatrix}^{2} \leq E(X^{*}) E(Y^{*})$$

sut $Y = 1_{X>0}$

$$\begin{bmatrix} E(X) \end{bmatrix}^{2} \leq E(X^{*}) E[(1 \times 20)^{2}]$$

$$Pr(X>0)$$

Proof:

$$\begin{aligned}
& u \log E(x^{2}) > 0 \\
E(y^{2}) > 0
\end{aligned}$$
Let $U = \frac{X}{VE(Y)} \quad V = \frac{Y}{VE(Y)}$

$$2 |UV| \le U^{2} + V^{2} \\
\Rightarrow & 2 |E(UV)| \le 2 E(1UV) \\
\le & E(U^{2}) + E(V^{2}) = 2
\end{aligned}$$

$$= \sum \left[E(UY) \right]^{2} \le 1$$

$$\equiv \left(E(XY) \right]^{2} \le E(X^{2}) E(Y^{2})$$

Lovisz Lock Lemma
Let
$$E_{i_1}E_{i_1\cdots}E_{i_1}$$
 be set $d_i^{(i)}$ bad" events $P_{i_1}(E_{i_1}) < i$ Vi
Say what to obvir $P_{i_1}(\prod_{i=1}^{(i)}E_{i_1}) > 0$ "produce publicly that
 $Noting bad hoppens"$
 d cases where sary:
 $(i) E_{i}$ one methodly independent
 $(i) \prod_{i=1}^{(i)}P_{i_1}(E_{i_1}) = i$ min band softice
LLL is about and
 $P_{i_1}(E_{i_1}) = method of E_{i_1\cdots}E_{i_1} = i \leq E_{i_1\cdots}$
 $P_{i_1}(E_{i_1}) = P_{i_1}(E_{i_1})$
 $P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1})$
 $P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1})$
 $P_{i_2}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_2}(E_{i_1})$
 $P_{i_2}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_2}) = P_{i_2}(E_{i_1})$
 $P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_2}) = P_{i_2}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_2}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_1}(E_{i_1}) = P_{i_1}($

several variants of generalizations (see notes)

Applications K-SAT Let q be a k-SAT formula w/ nvars m clauses. each clause has k literals

Thm: Let φ be a k-SAT formula w/ nvans m clauses. If no van appears $m > T = \frac{2^k}{4k}$ clauses, then formula has satisfying assignment

Application 2: Packet Routing
graph; n packets
each packet has
S: somme and specific path P: s: Pist:
t: destination and specific path P: s: Pist:
only one packet can travense an edge put time unit
so
Schedule specifies for each packet when to more, when to wait

$$d = \max |P_i|$$
 dilation
 $c = \max(\#paths P: that use e)$ congration
How long for each packet to reach its destination?
 $M(crd)$??? $O(cd)$

Can be proved using LLL

guarantees l'imited dependencing between congestion on different edges in different time peniods

