and Moment Method

- Chebycheo's Inequality

$$
\forall \lambda>0 \quad \operatorname{Pr}(|x-p| \geq \lambda 6) \leq \frac{1}{\lambda^{2}}
$$

- Another version $\operatorname{Pr}(x=0) \leq \frac{\operatorname{Van}(x)}{E(x)^{2}}$

P $\operatorname{Pr}(x=0)=\operatorname{Pr}(|x-p|-\mu) \leq \frac{S^{2}}{R^{2}}=\frac{\operatorname{Van}(x)}{E x y^{2}}$
Corollary: If $\operatorname{Van}(x)=0(E(x))^{2}$ then $\operatorname{Pr}(x>0)=1-0(1)$

Another $2^{\text {nd }}$ moment inequality

$$
\operatorname{Pr}(x>0) \geqslant \frac{(E(x))^{2}}{E\left(x^{2}\right)}
$$

Follows from Canchy-Schwarts

$$
\begin{aligned}
& {[E(x y)]^{2} \leq E\left(x^{2}\right) E\left(y^{2}\right)} \\
& \text { set } y=1_{x>0} \\
& {[E(x)]^{2} \leq E\left(x^{2}\right) \underbrace{E\left[\left(1_{x \geqslant 0}\right)^{2}\right]}_{\operatorname{Pr}(x>0)}}
\end{aligned}
$$

Today

- Lorasz Local Lemma

Lovász Local Lemma

Let $E_{1}, E_{21}, \ldots, E_{n}$ be set $g^{\prime \prime}$ bad" events Pr( $\left.E_{i}\right)<1 \quad \forall i$ Say want to show $\operatorname{Pr}\left(\bigcap_{i=1}^{m} \bar{E}_{i}\right)>0$

2 cases where easy:
(1) $E_{i}$ are mutually indepentart
(2) $\sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)<1$ union bound suffices

LLL is cloven comb
Def $E$ mutually index of $E_{1}, \ldots, E_{n}$ of $V$ subset $I \leq[1, n]$

$$
\operatorname{Pr}\left(E \mid \cap_{j \in I} E_{j}\right)=\operatorname{Pr}(E)
$$

Defn A dependency graph for $E_{1}, E_{2 \ldots}, E_{n}$ is $G=(V, E)$
where $V=\{1,2, \ldots, n\}$ \& $E_{i}$ is mutually indef $g\left\{E_{j} \mid\right.$ (i, $\left.) \& E\right\}$

Lovász Local Lemma
Let $E_{1, \ldots,} E_{n}$ be set of events sit.
(1) $\operatorname{Pr}\left(E_{i}\right)<p$

$$
\forall i
$$

(2) The max degree in dependency graph is $d$
(3) $4 d p \leq 1$

Then $\operatorname{Pr}\left(\bigcap_{i=1}^{n} \bar{E}_{i}\right)>0$
several variants \& generalizations (see notes)

Application K-SAT
Let $\varphi$ be a K-SAT formula $w / n$ vans $m$ clauses. $\downarrow$.
each clause has $k$ literals

The: Let $\varphi$ be a $k$-SAT formula w/ naans $m$ laves.
If no van appears in $>T=\frac{2^{k}}{4 k}$ causes, then formula has satisfying assignment

Application 2: Packet Routing
graph; $n$ packets each packet has
$S_{i}$ source and specific path $P_{i} \quad s_{i} \xrightarrow{P_{i}} t_{i}$
$t$ : destination
only ore packet can traverse an edgy pes time unit
so


Schedule specifies for each packet when to move, when to wait

$$
\begin{array}{ll}
d=\max _{i}\left|P_{i}\right| & \text { dilation } \\
c=\max _{e}\left(\# \text { paths } P_{i} \text { that use } e\right) & \text { congestion }
\end{array}
$$

How long for each packet to reach uts destination?

$$
\Omega(c+d) \quad ? ? ? \quad O(c d)
$$

[Leighton, Rap, Mages] $\exists$ schedule of length $O(c+d)$ always index of $n$ !

Can be proved using LLL

High level idea:
for each packet, assign random initial delay

$$
\text { in }[1, \alpha(c+d)]
$$

guarantees limited dependency between congestion on different edges in different time periods

Algorithmic version [Moen,Tardos]
2 clanses $C_{i} \& C_{j}$ are dependent if they shave a van

$$
D\left(c_{i}\right) \triangleq\left\{c_{j} \mid c_{i} \& c_{j \text { dependent }}\right\} \quad \text { Let } \quad d=\max _{i}\left|D\left(c_{i}\right)\right|
$$

Thy Let $\varphi$ be a $k$-SAT formula with $d \leq \frac{2^{k}}{8} \quad$ (mclawes, $n$ vars) Then $\varphi$ is satisfiable \& a satisfying assignment can be found in poly time.
Super coot prog

Algorithm
Initialize $\vec{x}=\left(x, \ldots, x_{n}\right)$ where $x_{i}=\left\{\begin{array}{lll}T & \text { w.p. } \\ F & \text { w. }\end{array}\right)$
While $\mathcal{F}$ clause $C$ that is not satisfied Fix (C)

$$
F_{1 x}(C)
$$

Randennly reassign $k$ vans un $($ $\stackrel{\text { to }}{\Rightarrow} \Rightarrow$ gives updated $x$ (ines $w . p$ nob $\frac{1}{2}$ )
White sore clause DI $\varphi$ that shares vans $w / C$ is violated Fix (D)

Always process clauses' in fixed order


