2nd Moment Method

- Chebyshev's Inequality
 \[\forall \lambda > 0 \quad \Pr(|X - \mu| > \lambda \sigma) \leq \frac{1}{\lambda^2} \]
- Another version
 \[\Pr(X \geq 0) \leq \frac{ \text{Var}(X) }{ E(X) } \]
 \[\Pr(X = 0) \leq \frac{ \text{Var}(X) }{ E(X) } \]

(Corollary: If \(\text{Var}(X) = o(E(X)^2) \) then \(\Pr(X > 0) = 1 - o(1) \))

Another 2nd moment inequality
\[\Pr(X > 0) \geq \frac{(E(X))^2}{E(X^2)} \]

Follows from Cauchy-Schwartz
\[[E(XY)]^2 \leq E(X^2) E(Y^2) \]

Proof: \(\text{wlog } \frac{E(X)}{E(Y)} > 0 \)

Let \(U = \frac{X}{\sqrt{E(X^2)}}, \quad V = \frac{Y}{\sqrt{E(Y^2)}} \)

\[2 |UV| \leq U^2 + V^2 \]
\[\Rightarrow 2 |E(UV)| \leq 2 E(1UV) \]
\[\leq E(U^2) + E(V^2) = 2 \]
\[\Rightarrow [E(UV)]^2 \leq 1 \]
\[\Rightarrow [E(XY)]^2 \leq E(X)^2 E(Y^2) \]
Lovász Local Lemma

Let E_1, E_2, \ldots, E_n be a set of "bad" events $\Pr(E_i) < 1 \quad \forall i$

Say want to show $\Pr(\bigcap_{i=1}^n \overline{E_i}) > 0$ "positive probability that nothing bad happens"

2 cases where easy:
1. E_i are mutually independent
2. $\sum_{i=1}^n \Pr(E_i) < 1$ union bound suffice

LLL is clever comb

Defn E mutually indep across E_1, E_2, \ldots, E_n if Y subset $E \subseteq \{1, \ldots, n\}$

$$\Pr(E | \bigcap_{j \notin Y} E_j) = \Pr(E)$$

Defn A dependency graph for E_1, E_2, \ldots, E_n is $G = (V, E)$

where $V = \{1, 2, \ldots, n\}$ & E is mutually indep of $\{E_j | (i, j) \in E\}$

Lovász Local Lemma

Let E_1, E_2, \ldots, E_n be a set of events s.t:
1. $\Pr(E_i) < 1 \quad \forall i$
2. The max degree in dependency graph is d
3. $4dp \leq 1$

Then $\Pr(\bigcap_{i=1}^n \overline{E_i}) > 0$

Several variants & generalizations (see notes)
Let \(\varphi \) be a \(k \)-SAT formula with \(n \) vars and \(m \) clauses.

Each clause has \(k \) literals.

Thm: Let \(\varphi \) be a \(k \)-SAT formula with \(n \) vars and \(m \) clauses.

If no variable appears in more than \(T = \frac{2^k}{4k} \) clauses, then the formula has a satisfying assignment.
Application 2: Packet Routing

- A graph with \(n \) packets
 - Each packet has a source \(s \) and destination \(t \)
- Only one packet can traverse an edge per time unit

Schedule specifies when to move, when to wait

\[
\begin{align*}
d &= \text{max}\left(\{P_i\} \right) \quad \text{dilation} \\
c &= \text{max}\left(\#\text{paths } P_i \text{ that use } e\right) \quad \text{congestion}
\end{align*}
\]

How long for each packet to reach its destination?

\[
\mathcal{L}(cd) \quad ???? \quad O(cd)
\]

[Leighton, Rao, Maggs] \(\exists \) schedule of length \(O(cd) \) always independent of \(n \)

Can be proved using LLL

High level idea:

- For each packet, assign random initial delay in \([1, \alpha(c+d)]\)

Guarantees limited dependency between congestion on different edges in different time periods
Algorithmic version

Algorithms

Algorithm

Initialize \(x^0 = (x_1, \ldots, x_n) \)
where \(x_i \in \{0, 1\} \)

While some clause \(C \) that is not satisfied

\[\text{Fix}(C) \]

Randomly reassign \(k \) vars \(u \in C \)
 to \(+/\) (indep w/p \(\frac{1}{2} \))

\(\implies \) give updated \(x \)

While some clause \(D \) of \(\Psi \) that shares vars w/ \(C \) is violated

\[\text{Fix}(D) \]

Fix \(D \) could be \(C \)

Thm

Let \(\Psi \) be a \(k \)-SAT formula with \(d \leq \frac{2^k}{3} \) (in \(\max \) clauses, vars)

Then \(\Psi \) is satisfiable & a satisfying assignment can be found in poly time.