2nd Moment Method

- Chebyshev's Inequality
 \[\forall \lambda > 0 \quad \Pr \left(|X-\mu| > \lambda \sigma \right) \leq \frac{1}{\lambda^2} \]

- Another version
 \[\Pr (X=0) \leq \frac{\text{Var}(X)}{E(X)^2} \]

- Pr(\text{no class Monday})
- Project proposal due Monday

Another 2nd moment inequality

\[\Pr (X > 0) \geq \frac{(E(X))^2}{E(X^2)} \]

Follows from Cauchy-Schwartz

\[\left[E(XY) \right]^2 \leq E(X^2) E(Y^2) \]

Set \(Y = 1_{X>0} \)

\[E(X) \leq E(X^2)^{\frac{1}{2}} E \left[\left(1_{X>0} \right)^2 \right] \]

Proof:

wlog \(E(X^2) > 0 \)

Let \(U = \frac{X}{\sqrt{E(X^2)}} \) \(V = \frac{Y}{\sqrt{E(Y^2)}} \)

\[2 |UV| \leq U^2 + V^2 \]

\[\Rightarrow 2 |E(UV)| \leq E(UV) \leq E(U^2) + E(V^2) = 2 \]

\[\Rightarrow \left| E(UV) \right|^2 \leq 1 \]

\[\Rightarrow \left[E(XY) \right]^2 \leq E(X^2) E(Y^2) \]
Lovász Local Lemma

Let E_1, E_2, \ldots, E_n be a set of "bad" events.

Say we want to show $\Pr(\bigcap_{i=1}^n \overline{E_i}) > 0$ "positive probability that nothing bad happens."

2 cases where easy:
1. E_i are mutually independent $(1-p)^n$
2. $\sum_{i=1}^n \Pr(E_i) < 1$ union bound suffice

LLL is clever comb

\[\Pr(\bigcap_{i=1}^n \overline{E_i}) = \Pr(\overline{E}) \]

A dependency graph for E_1, E_2, \ldots, E_n is $G = (V, E)$ where $V = \{1, 2, \ldots, n\}$ & E_i is mutually indep. of $\{E_j \mid (i, j) \in E\}$

Lovász Local Lemma

Let E_1, \ldots, E_n be a set of events s.t.
1. $\Pr(E_i) < p \quad \forall i$
2. The max degree in dependency graph is d
3. $4dp \leq 1$

Then $\Pr(\bigcap_{i=1}^n \overline{E_i}) > 0$

Several variants & generalizations (see notes)
Let φ be a k-SAT formula with n variables and m clauses. Each clause has k literals.

$$\Pr(\text{random assignment to variables satisfies a particular clause}) = 1 - \frac{1}{2^k}$$

$$\Pr(\exists \text{ unsatisfied clause}) \leq m \frac{1}{2^k}$$

If $m < 2^k \Rightarrow \exists$ satisfying assignment.

Thm: Let φ be a k-SAT formula with n variables and m clauses. If no variable appears on $\geq \frac{T}{m} = \frac{2^k}{4k}$ clauses, then the formula has satisfying assignment.

Pr: Let E_i be the event that clause i is not satisfied.

$$p = \Pr(E_i) = 2^{-k}$$

E_i is mutually independent of any clause it doesn't share variables with.

$$d \leq kT = k \cdot \frac{2^k}{4k} = \frac{2^k}{4}$$

$$4dp = 4 \cdot \frac{2^k}{4} \cdot 2^{-k} \leq 1 \Rightarrow \text{valid}.$$
Application 2: Packet Routing

A graph G with n packets, each packet has a source s_i and destination t_i, and specific path $P_i: s_i \rightarrow t_i$.

Only one packet can traverse an edge per time unit.

Schedule specifies for each packet when to move, when to wait:

\[d = \max\{P_i\} \quad \text{dilation} \]
\[c = \max_{e} (\# \text{paths } P_i \text{ that use } e) \quad \text{congestion} \]

How long for each packet to reach its destination?

\[N(c+d) \quad ??? \quad O(cd) \]

[Leighton, Rao, Maggs] \exists schedule of length $O(c+d)$ always independent of n.

Can be proved using LLL

High level idea:

For each packet, assign random initial delay in $[1, \alpha(c+d)]$.

Guarantees limited dependency between congestion on different edges in different time periods.
Algorithmic version

2 clauses C_i & C_j are dependent if they share a van

$$D(C_i) = \{ C_j : C_i \& C_j \text{ dependent} \}$$

Let $d = \max |D(C_i)|$

Theorem

Let Φ be a k-SAT formula with $d \geq \frac{2^k}{3}$ (in clauses, not vars)

Then Φ is satisfiable & a satisfying assignment can be found in poly time.

Algorithm

Initialize $x^0 = (x_1, \ldots, x_n)$

where $x_i = \begin{cases} 1 & \text{w.p. } \frac{1}{k} \\ -1 & \text{w.p. } \frac{2}{k} \end{cases}$

While some clause C that is not satisfied

Fix(C)

Always process clauses in fixed order

Fix(C)

Randomly reassign k vars on C to $+/-$ (indep w.p. $\frac{1}{2}$)

\Rightarrow give updated x

While some clause $D \in \Phi$ that shares vars w/ C is violated

Fix(D)

Observations

1. #random bits used is $n + k \cdot \# \text{calls to Fix}$

2. If Fix(C) terminates, then it terminates with assignment in which all clauses in $D(C)$ are satisfied.

3. $S = \{ S_i \text{ satisfied by previous level call to Fix} \}$

 - S_i satisfied by previous level call to Fix,(i)

 If Fix(C_i) terminates, then all clauses in S are still satisfied.

\Rightarrow make progress when all other calls finish.
Then \(V \text{ kSAT formula } u \vdash d \leq 2^k \) alg terminates in polytime w.h.p.

Proof: \(f : A \rightarrow B \) injective \(|B| \geq |A| \)

Suppose abort the computation after \(T \) calls to \(\text{Fix} \)

ALG uses up to \(n + kT \) bits.

Let \(A = \{0, 1\}^{n+kt} \)

\(|A| = 2^{n+kt} \)

Write down transcript of computation for fixed \(x_0, y_0 \)

\(x_0, y_0, z \xrightarrow{\text{Fix}(c_i)} x_1, y_1, z_1, \quad x_1, y_1, z_2 \xrightarrow{\text{Fix}(c_i)} x_2, y_2, z_2 \rightarrow \ldots \rightarrow x_T, e, z_T \)

\(\uparrow \)

- \(z' \) is obtained from \(z \) by appending
 - 1 binary rep of \(C_i \) if outer call to \(C_i \): \(\left\lceil \log_2(n) \right\rceil + 1 \)
 - 1 "binary rep of \(C_i \)" if inner call to \(C_i \): \(\left\lceil \log_2(n) \right\rceil + 1 \) bits.
Claim: transcript is reversible

1. Construct

\[f(x_0, y_0, z) \rightarrow (x_1, y_1, z_1) \]

\[n + kT \text{ bits} \rightarrow n + \frac{\text{bits for input cells}}{m(\log_2(n)+2)} + \frac{\text{bits for inner cells}}{T(\log_2(d)+2)} \leq k-3 \]

\[n + kT \rightarrow \frac{\text{bits in final transcript}}{2} \leq n + m(\log_2(n)+2) + T(k-1) \]

All G doesn't terminate

\[#\text{inputs} = #\text{outputs} \]

\[n + kT \leq n + m(\log_2(n)+2) + T(k-1) \]

\[\Rightarrow T \leq m(\log_2(n)+2) \]
\[\text{If } T > S \implies \exists \text{ input on which ALG terminates} \]

Suppose that on fraction \(\geq 2^{-c} \) of inputs ALG doesn't terminate.

\[
2^{n+k-c} \leq \frac{\# \text{ inputs on which it doesn't terminate}}{\text{ALG terminates}} \leq 2^{n+m(S \log_2(n)+2) + T(k-1)}
\]

\[
\implies T \leq \frac{m(S \log_2(n)+2)}{S} + 5
\]

If \(T > S \), then alg doesn't terminate on \(< 2^{-c} \) fraction of inputs.

Succeed w.p. \(\geq 1 - 2^{-c} \).