2nd Moment Method

- Chebycheo's Irequalify

$$
\forall \lambda>0 \quad \operatorname{Pr}(|x-p| \geq \lambda 6) \leq \frac{1}{\lambda^{2}}
$$

- Anothen versin $\operatorname{Pr}(x=0) \leq \frac{\operatorname{Van}(x)}{E(x)^{2}}$

Corollany: If $\operatorname{Van}(x)=0(E(x))^{2}$ then $\operatorname{Pr}(x>0)=1-0(1)$

Another $2^{\text {nd }}$ moment inequally

$$
\operatorname{Pr}(x>0) \geqslant \frac{E(x))^{2}}{E\left(x^{2}\right)}
$$

Follows from Canchy-Schwarts

$$
\begin{aligned}
& {[E(x y)]^{2} \leq E\left(x^{2}\right) E\left(y^{2}\right)} \\
& \text { set } y=1_{x>0} \\
& {[E(x)]^{2} \leq E\left(x^{2}\right) \underbrace{E\left[(1 x>0)^{2}\right]}_{\operatorname{Pr}(x>0)}}
\end{aligned}
$$

Today

- Lorasz Local Lemma
- no class Mondan
- proget praprposal Mare Manday

Proof:

$$
\begin{array}{ll}
\omega \log & E\left(x^{2}\right)>0 \\
E\left(x^{2}\right)>0
\end{array}
$$

Let $U=\frac{x}{\sqrt{E\left(X^{\prime}\right)}} \quad V=\frac{y}{\sqrt{E\left(Y^{\prime}\right)}}$

$$
\begin{aligned}
& 2|U V| \leq U^{2}+v^{2} \\
\Rightarrow & 2|E(U v)| \leq 2 E(\mid U V)) \\
& \leq E\left(u^{2}\right)+E\left(v^{2}\right)=2 \\
\Rightarrow & {[E(U V)]^{2} \leq 1 } \\
\equiv & {[E(X y)]^{2} \leq E\left(x^{2}\right) E\left(y^{2}\right) }
\end{aligned}
$$

Lovász Local Lemma

Let $E_{1}, E_{2}, \ldots, E_{n}$ be set g "bad" events

$$
\begin{aligned}
& P \cdot \\
& P r\left(E_{i}\right)<1 \quad 4 i
\end{aligned}
$$

Say want to show $\operatorname{Pr}\left(\bigcap_{i=1}^{m} \bar{E}_{i}\right)>0$

2 cases where easy:
(1) E_{i} are mutually independent $(1-p)^{n}$
(2) $\sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)<1 \quad$ union bound suffices

LLL is leven comb
Def E mutually indep of E_{1}, \ldots, E_{n} of V subset $I \leq[1, n]$

$$
\operatorname{Pr}\left(E \mid \cap_{j \in I} E_{j}\right)=\operatorname{Pr}(E)
$$

Defn A dependency graph for $E_{1}, E_{2 \ldots}, E_{n}$ is $G=(V, E)$
where $V=\{1,2, \ldots, n\}$ \& E_{i} is mutually indef $g\left\{E_{j} \mid\right.$ (ii) $\left.A E\right\}$

Lavas Local Lemma
Let E_{1}, \ldots, E_{n} be set of events sit.
(1) $\operatorname{Pr}\left(E_{i}\right)<p$
(2) The max degree in dependency graph is d
(3) $4 d p \leq 1$

Then $\operatorname{Pr}\left(\bigcap_{i=1}^{n} \bar{E}_{i}\right)>0$
several variants \& generalizations (see notes)

Applicaton K-SAT
Let φ be a k-SAT formula w / n vans m clawses.

$$
x_{1}, \bar{x}_{3} \sim x_{5}
$$

each clanse has k liteald
$\operatorname{Pr}($ randon assignment to vars satisties a particulan lause $)=1-\frac{1}{2^{k}}$

$$
\begin{aligned}
& \operatorname{Pr}(\exists \text { unsatistad laux }) \leq m \frac{1}{2^{k}} \\
& y m<2^{k} \Rightarrow \exists \text { satishyig assignmet. }
\end{aligned}
$$

Thm: Let φ be a k-SAT formula w / n vans m clanses.
If no van appeans in $>T=\frac{2^{k}}{4 k}$ clauses, then formula has satisfying assugnment

Pt LLL
Ei ment that clause; not satisfied

$$
p=\operatorname{Pr}\left(E_{i}\right)=2^{-k}
$$

E_{i} is mutually indepg any clause it doesit sharevenswin

$$
\begin{aligned}
& d \leq k T=k \cdot \frac{2^{k}}{4 k}=\frac{2^{k}}{4} \\
& 4 d p=4 \cdot \frac{2^{k}}{4} 2^{-k} \leq 1
\end{aligned}
$$

Application 2: Packet Routing
graph; n packets each packet has
S_{i} source and specific path $P_{i} \quad s_{i} \xrightarrow{P_{i}} t_{i}$
t : destination
only ore packet can traverse an edgy pes time unit
so

Schedule specifies for each packet when to move, when to wait

$$
\begin{array}{ll}
d=\max _{i}\left|P_{i}\right| & \text { dilation } \\
c=\max _{e}\left(\# \text { paths } P_{i} \text { that use } e\right) & \text { congestion }
\end{array}
$$

How long for each packet to reach uts destination?

$$
\Omega(c+d) \quad ? ? ? \quad O(c d)
$$

[Leighton, Rap, Mages] \exists schedule of length $O(c+d)$ always index of n !

Can be proved using LLL

High level idea:
for each packet, assign random initial delay

$$
\text { in }[1, \alpha(c+d)]
$$

guarantees limited dependency between congestion on different edges in different time periods

Algorithmic version
[Mosu,Tandos]
2 cleanses $C_{i} \& C_{j}$ are dependent if they shave a van

$$
D\left(c_{i}\right) \triangleq\left\{c_{j} \mid c_{i} \& c_{j} \text { dependent }\right\}
$$

Let $d=\max \left|D\left(c_{i}\right)\right|$
Thy Let φ be a k-SAT formula with $d \leq \frac{2^{k}}{8} \quad$ (m cleaves, n vans)
Then φ is satiofiable \& a satisfying assignment can be found in poly time.
Super cool prog
$C_{1}, l_{2}, \ldots, c_{m}$

Algorithm
Initialize $\vec{x}=\left(x, \ldots, x_{n}\right)$
where $x_{i}=\left\{\begin{array}{lll}T & \text { w.p. } \\ F & \text { w. }\end{array}\right)$
While \mathcal{F} clause C that is not satisfied Fix (C)

$$
F_{1 x}(C)
$$

Randennly reassign k vans un $($ $\stackrel{\text { to }}{\Rightarrow}$ gives updated x wind $\frac{1}{2}$)
White sore claude D I P that
shares vans w / C is visited shares vans w / C is violated Fix (D)
[nate D contd be C]
Always process clauses' in fixed arden

(1) \#random bits uses is $n+k \cdot \neq$ toll,
(2) If $\left.F_{i} \mid C\right)$ terminates, then t terminates with ${ }^{\text {vinssiginneat }}$ in which all lawes in D(C) are satisfied.
(3) $S=\left\{C_{j}\right)$ satistied byre atop parl $\left.^{\text {coll to } c_{i}}\right\}$

YFix(Ci) terminals, the all lanes in S are shell satisfied.
$1 c_{1} 1 C_{2} 2 C_{2} 01 C_{4} 2 C_{2} 0000$
\Rightarrow make precess when oaten calls finish.

Thur $\forall k S R T$ formula $w) d \leq \frac{2^{k}}{8}$ alg taminintes in ply give whip.
Pf $\quad f: A \rightarrow B$ ingective $\quad|B| \geqslant|A|$

Suppose abort, the computation often T calls to Fix

Let $A=\{0,\}^{n+k T}$
ALG uses up to $n+k T$ bits.

$$
|A|=2^{n+k T}
$$

write down transuipt of computatus for fined x_{0}, y_{0}

$$
x_{0}, y_{0}, \varepsilon \xrightarrow{F_{1}\left(c_{1}\right)} \underbrace{\left.x_{1}, y_{1},\right)^{2}} \xrightarrow{F_{1 x}\left(\mathcal{c}_{2}\right)} x_{2,}, y_{2},,^{2} \rightarrow \cdots
$$

- \# bits used in $\left.x_{t+1}, y_{t+1}\right)^{2}+1$
$<\#$ bits used on $x_{+1} y_{i} 1^{2}+$

- prows is remusible

$$
\begin{aligned}
f\left(x_{0}, y_{0}, \varepsilon^{2}\right) & \rightarrow\left(x_{T}, \varepsilon, z_{T}\right) \\
\begin{array}{l}
t \text { steps } \\
(x, y, z)
\end{array} & \xrightarrow{F_{i x}\left(c_{i}\right)}\left(x_{1}^{\prime}, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

z is obtained from z by appending

- 1 binargerp $C_{i} \quad y$ adencale to $C_{i}\left[\log _{g}(m)\right]+1$

c_{j} intursects $\underbrace{C_{i} c_{i_{2}}-c_{i_{d}}}_{T}$
- add a O y all clanses in $D\left(C_{i}\right)$ are satistied.

Claim: transupp is revensible
(1) conshict

$$
\begin{aligned}
& f\left(x_{0}, y_{0}, \varepsilon\right) \rightarrow\left(x_{T}, \varepsilon_{T}, z_{T}\right)
\end{aligned}
$$

n+kT \Longrightarrow \#bits in final transupt

$$
\leqslant n+m\left(\left\lceil\log _{\gamma}(m) \mid+2\right)+T(k-1)\right.
$$

Winput ALG doesit terminuate

$$
\begin{aligned}
\text { Hinputs } & =\text { \#atpuls } \\
2^{n+k T} & \leqslant 2^{\left.n+m\left(S k q_{2}(w)\right) \mid+2\right)+T(k-1)} \\
\Rightarrow \quad T & \leqslant \underbrace{\left.m\left(T \log _{z}(n)\right\rangle+2\right)}_{a}
\end{aligned}
$$

If $T>S$ Jinput on which ALG ferminates suppose that or fraction $\geqslant 2^{-c}$ of inputs ALG dount tesirinee

$$
\begin{aligned}
& \Rightarrow \quad T \leqslant \underbrace{\left.m\left(\int \log _{2}(r)\right)+2\right)+c}_{S^{\prime}}
\end{aligned}
$$

I $T>S^{\prime}$ than alg doesi't ferninate

$$
\begin{aligned}
& \text { snceed up. } \geqslant 1-2^{-c} \text { dinpurs } \\
& \text { on }<2^{-c} \text { fractem }
\end{aligned}
$$

