Summary of wat wedid: "online" primol-dual analysis

What duality \Rightarrow feasible primal \leq OPT \leq feasible dual

$$
\sum_{(i j)=E} x_{i j} \leq \sum_{(i, j) \in E} x_{i j}^{*} \leq \sum_{i} \alpha_{i}+\sum_{j} \beta_{j}
$$

As vertices amived, we conotmoted neen-feasible dual
by ensuring that $\forall(i j)=E \quad \alpha_{i}+\beta_{j} \geqslant 1-\frac{1}{e}$

$$
\begin{gathered}
\Rightarrow \quad \alpha_{i}^{\prime}=\frac{\alpha_{i}}{1-\frac{1}{e}} v_{i} \quad \beta_{j}^{\prime}=\frac{\beta_{j}}{1-\frac{1}{e}} \forall_{j} \\
\text { is feasible dual }
\end{gathered}
$$

Today

- finishup online matching analysis - second mover methed.
- random graphs
- penclatenos thees

Integral Online Matching

Ranking Algorithm - Select random total arden π g efts of L - When new vertex in R anives, match A to brest ranked neighbor according to π '

Reinterpretation
$\forall i \in L$, pick $Y_{i} \sim U[0,1]$ independently
when j arrives, match t to argmin $\left\{y_{i} \mid i \in N(j)\right.$ iunmatehd $\}$
Proof that this alg has c.r. $1-\frac{1}{e}$

- Build feasible primal soln $\quad\left\{x_{i j} \mid(i, j) \in E, x_{i j} \in\{0,13\}\right.$
and (not necessarily feasible) randomized dual sorn

$$
\left\{\alpha ;, \beta_{j} \mid i \in L, j \in R\right\}
$$

st.
(1) $P=\sum_{(i, j) \in E} x_{i j} \geqslant D=\sum_{i \in L} \alpha_{i}+\sum_{j \in R} \beta_{j}$
(2) $E\left(\frac{D}{c}\right)$ feasible dual for $\quad \begin{array}{r}c=1-\frac{1}{e}\end{array}$

This suffices since

$$
\begin{aligned}
& P \geqslant D \quad \frac{E(P)}{C} \geqslant \frac{E(D)}{C} \geqslant O P T \\
& \text { weokdwality } \\
& \Rightarrow E(P) \geqslant C O P T=\left(1-\frac{1}{C}\right) O P T
\end{aligned}
$$

\qquad

Probabilistic Method.

First moment method.

$$
\begin{aligned}
\text {-riv. tale sore value } & \geqslant E(x) \\
& \leq E(x) \\
-x \geqslant 0 \text { int valved } \Rightarrow & \operatorname{Pr}(x \geqslant 1) \leq E(x) \\
& E(x) \ll 1 \Rightarrow x=0 \text { w.h.p. }
\end{aligned}
$$

Proving $\operatorname{Pr}(x \geqslant 1)$ large?
$E(X)$ lang insifficient -contd be HUGE with negligible prob
and Moment Method

- Chebychou's Inequality

$$
\forall \lambda>0 \quad \operatorname{Pr}\left(|x-\mu| \geq \lambda^{6}\right) \leq \frac{1}{\lambda^{2}}
$$

- Another version $\operatorname{Pr}(x=0) \leq \frac{\operatorname{Van}(x)}{E(x)^{2}}$

$$
\text { PI } \operatorname{Pr}(x=0) \leq \operatorname{Pr}(|x-\mu| \geq \mu) \leq \frac{r^{2}}{\mu^{2}}=\frac{\operatorname{Va}(x)}{E(x)^{2}}
$$

Corollary: If $\operatorname{Van}(x)=0(E(x))^{2}$ them $\operatorname{Pr}(x>0)=1 \cdots(1)$
Common care

$$
x=x_{1}+x_{2}+\ldots+x_{n}
$$

Use $\operatorname{Van}(x)=\sum_{i=1}^{n} \operatorname{Van}\left(x_{i}\right)+\sum_{i \neq j} \operatorname{Cos}\left(x_{i}, x_{j}\right)$

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =E[(x-\operatorname{coc})(y-E C(y)] \\
& =E(x y)-E(y) E(y) \\
\operatorname{cov}(x, y) & =0 \quad f x \& y \text { ind }
\end{aligned}
$$

PE

$$
\begin{aligned}
& =\operatorname{Var}(x+y)=E\left[(x+y-E(x+y))^{2}\right] \\
& =E\left[(x-E(x))^{2}+(y-E(y))^{2}+2(x-E(x))(x-E(y)]\right. \\
& =\operatorname{Van}(x)+\operatorname{Van}(y)+2 \operatorname{Cov}(x, y)
\end{aligned}
$$

Often x_{i} 's are indicator ruvis $\quad x_{i} \sim$ Bull $p i$)

$$
\begin{aligned}
& \operatorname{Van}\left(x_{i}\right)=p_{i}\left(1-p_{i}\right) \leq p_{i}=E\left(x_{i}\right) \\
& \Rightarrow \operatorname{Van}(x) \leq E(x)+\sum_{i \neq j} \operatorname{Cor}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Example 1: Considen $G_{\text {rip }}$, graph on n untias whice 'uch idoe wim gob P (indpendentily)
For what p is Gn,ip binely to have delyue
Claim:
(1) almost swey doont for $p=0\left(n^{-2 / 2}\right)$
(2) amst swily doss for $p=\omega\left(n^{-3}\right)$

Proof 1 (1)

$$
x_{i}=\left\{_{1}^{1} \begin{array}{c}
c_{i} \\
0 \\
0 \\
0.0 .0
\end{array} \quad X=\sum_{i=1}^{(\#)} x_{i} \quad \# 4\right. \text { chenes }
$$

Prous o ()
For $p=\omega\left(n^{-2 / 3}\right) \quad E(x) \rightarrow \infty \quad$ insufficient by itsely
So will use $2^{\text {re }}$ moment method will show $\operatorname{Var}(x)=0\left(E(x)^{2}\right)$ ned to comprte $\operatorname{Van}(x)$
$\operatorname{Cov}\left(x_{i}, x_{j}\right)$
type-1 $c_{i n} c_{j}=\phi$

type $2 c_{i} n c_{y} \mid=1$

Evolution of Random Graphs

The following statements hold almost surely \equiv with prob $\rightarrow 1$ os $n \rightarrow \infty$

$$
\begin{array}{lll}
p=0\left(\frac{1}{n}\right) & p \leq \frac{c}{n} & p=\frac{1}{n} \\
\text { forest } & p=c c \\
\text { no cycles } & \begin{array}{l}
\text { longest conned ed } \\
\text { component has } \\
\text { size } \theta(\log n)
\end{array} & \text { longest } c c \\
& \text { has size } \theta\left(n^{2 / 3}\right)
\end{array}
$$

$$
c>1
$$

$$
p \geqslant \frac{c}{n}
$$

longest CC

$$
\text { has size } \theta(n)
$$

"giant component"

$$
p=\frac{\ln n}{n}
$$

graph is connected has Hamiltonian cycle contains perfect matching

Graph property (closed under isomorphism)
(yproperng holds \& rename the nodes, still holds)

$$
\operatorname{Pr}(G(n, p) \vDash A) \equiv \operatorname{Pr}(\text { random graph from Gram prop y } A))
$$

Monotone graph property: \uparrow or \downarrow as add edges 8.g. - being connected

- having min degree 10
- containing a perfect matching
- containing Hamiltonian cycle

Cool: Every monotore gaph property has a shan threshold

$$
\text { Afn } p^{*}=p^{*}(n) \text { is a }
$$

threshold for a monotone
\uparrow property $A y$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Pr}(G(n, p) F A) \\
&= \begin{cases}0 & y \frac{p}{p^{*} \rightarrow 0} \\
1 & y \frac{p}{p^{*}} \rightarrow \infty\end{cases}
\end{aligned}
$$

Ex $p=n^{-2 / 3}$ threshold for for K_{4}

$$
\begin{aligned}
& p \ll n^{-2 / 3} \\
& n o K_{4}
\end{aligned}
$$

$$
\begin{aligned}
& p \gg n^{-2 / 3} \\
& k_{4}
\end{aligned}
$$

Graph properties expressible in "First ordn theory" of graphs
langrage vars (x, y, z, \cdots) represent vertices
equality $x=y$

Examples:
G contains triangle
no isolated pt
diameter 2
G Hamiltonian, G connected not FO propaties

Thy [Fagin] [Glebskii et al]
\forall fixed p, o<p<1, and any $F O$ graph property A

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(G(n, p) F A)=0 \text { or } 1
$$

Thy [shelah, Apemen]
irrational $\alpha, \quad 0<\alpha<1$, setting $p=p(n)=n^{-\alpha}$ and for any $F O$ property A

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(G(n, p) F A)=0 \text { or } 1
$$

this is about threshold fins
Ex $p=n^{-2 / 3}$ threshold for for K_{4}

$$
\begin{aligned}
& p \ll n^{-2 / 3} \\
& n o K_{4}
\end{aligned}
$$

$$
\begin{aligned}
& p \gg n^{-2 / 3} \\
& k_{4}
\end{aligned}
$$

Another $2^{\text {nd }}$ moment inequality

$$
\operatorname{Pr}(x>0) \geqslant \frac{(E(x))^{2}}{E\left(x^{2}\right)}
$$

Follows from Canchy-Schwartz

$$
[E(x y)]^{2} \leq E\left(x^{2}\right) E\left(y^{2}\right)
$$

Proof:

$$
\begin{array}{ll}
\omega \log \quad & E\left(x^{2}\right)>0 \\
E\left(y^{2}\right)>0
\end{array}
$$

Let $U=\frac{x}{\sqrt{E\left(x^{x}\right)}} \quad V=\frac{y}{\sqrt{E\left(y^{2}\right)}}$

$$
\begin{aligned}
& 2|u v| \leq u^{2}+v^{2} \\
\Rightarrow & 2|E(u v)| \leq 2 E(\mid u v) \\
& \leq E\left(u^{2}\right)+E\left(v^{2}\right)=2 \\
\Rightarrow & {[E(u v)]^{2} \leq 1 } \\
\equiv & {[E(X y)]^{2} \leq E\left(x^{2}\right) E\left(v^{2}\right) }
\end{aligned}
$$

complete binary tree of depth n each edge present with prob p
Is there a surviving path from root to a ley?

X \#leaves reachable from root

$$
x=x_{1}+x_{2}+\cdots+x_{n}
$$

X_{i} indicates $y i^{\text {th }}$ leg is reachable

$$
E(X)=
$$

$$
\begin{aligned}
& p>\frac{1}{2} \quad \operatorname{Pr}(x>0) \geqslant \frac{[E(x)]^{2}}{E\left(x^{2}\right)} \\
& x^{2}=\left(\sum_{i} x_{i}\right)^{2}=\sum_{i} x_{i}^{2}+\sum_{i} \sum_{j \neq i} x_{i} x_{j} \\
& E\left(x_{i} x_{j}\right)=p^{2 n-k} \\
& \sum_{i} \sum_{j \neq i} E\left(x_{i} x_{j}\right)=\sum_{k=0}^{n-1} 2^{k} 2^{n-k} 2^{n-k} p^{2 n-x} \\
&=\frac{1}{2} \sum_{k=0}^{n} 2^{2 n} \frac{1}{2^{k}} p^{2 n} \frac{1}{p^{k}} \\
&=\frac{1}{2}(2 p)^{2 n} \sum_{k=0}^{n-1} \frac{1}{(2 p)^{k}} \\
& \frac{\left.1-\frac{1}{2 p p}\right)}{1-\frac{1}{2 p}}
\end{aligned}
$$

$$
p=\frac{1}{2}
$$

$$
\begin{aligned}
\sum_{i} \sum_{j \neq i} E\left(x_{i} x_{j}\right) & =\sum_{k=0}^{n} 2^{k} \partial^{n-k} 2^{n-k-1} p^{2 n-k} \\
& =\frac{n}{2}
\end{aligned}
$$

$$
E\left(x^{2}\right)=1+\frac{n}{2} \quad[E(x)]^{2}=1
$$

Let's prove that this is the right ardent magrainde

