Bipartite Matching
Green bipartite graph (L, R, E)
a matching $M \leq E$ is a set of edges that shave no common endpts

Goal: find matching of maximum size
Online bipartite matching
L is known ahead of time vertices in R anise one at a time when $j \in R$ amines learn which vertices in L are reughbers of j make an irrevocable decision as to which neighbor y any to match i to

Killer app:

Greedy Alg match aniving node to any available reughber
Claimi Grey always obtains a mattering of size $\geqslant \frac{1}{2}$ OPT
Analysis: every time Greedy adds on ede to matching Place of 50 as earning \$1 $\$ 1$

Now consider any edge (i, i) matched by OPT (when janis)
If Greedy carl match j, then i is already matched. "charge" OPTs ear to $50 \&$ on
$\Rightarrow \forall \$ 1$ OPT earns, Greedy earns $\geqslant 50 \$$
the competitive ratio of Greedy $\left[:=\max _{I} \frac{\text { size g Greedy matching on } I}{\text { size }}\right.$ opt matching on I

$$
=\frac{1}{2}
$$

And no deterministic alg can do betters.
So weturnto randomization

Fractional matching problem
When a node $j \in R$ annires, can allocate it fractionally $x_{i j}$ fraction of; matched to i
constraints $\quad \sum_{j \in R} x_{i j} \leq 1 \quad$ total ant i matted ≤ 1
$\sum_{i \in L} x_{i j} \leq 1 \quad$ total ant of j matched ≤ 1
Claim: Let A be a randomized alg for integral matching
\Rightarrow deterministic fractional alg D sit. Finstance I

Proof: D "simulates A "
when j anives, set $x_{i j}^{D}=\operatorname{Pr}\left(X_{i j}^{A}=1\right)$

$$
\sum_{i, j} x_{i j}^{D}(I)=F\left(\sum_{i, 5} X_{i j}^{A}(I)\right)
$$

$$
\begin{aligned}
& \forall i \sum_{j \in N(i)} X_{i j}^{A} \leq 1 \Rightarrow E\left(\sum_{j \in M(i)} X_{i j}^{A}\right) \leq 1 \\
& \\
& \Rightarrow \sum_{j \in W(i)} X_{i, j}^{D} \leq 1 \\
& \Rightarrow \sum_{(i, j) \in E} X_{i, j}^{D}=E\left(\sum_{(i, j) \in E} X_{i, j}^{A}\right)=E(\text { performance } f A)
\end{aligned}
$$

\Rightarrow upper bound on c.r. of deterministic fractional all
\Rightarrow upper bound on C.F. of randomized alg

Water-level alg

Imagine vertices on LHS are water containers, with capacity 1
RHS - each vertex is source of I unit of water When jER anives "fill up" neighbors in obvious way

pom I unit
of water m

Primal dual analysis

$$
\max \begin{array}{ll}
\sum_{(i, j) \in E} x_{i j} & \\
\sum_{j \in N(i)} x_{i j} \leq 1 & i \in L \\
\sum_{i \in N(j)} x_{i j} \leq 1 & j \in R \\
x_{i j} \geqslant 0 &
\end{array}
$$

