Today

- Knish SDP rounding 3-cloring
- randomized online biparhte matching

MAXCUT
Input: $G=(V, E) \quad \omega_{i j} \quad \forall(i, j) \in E$
Goal: partition vertex set so as to max weight of endpts crossing cut.

$$
\begin{array}{r}
\max \frac{1}{2} \sum_{(i, j) \in=} w_{i}\left(1-y_{i} y_{j}\right) \\
y_{i}^{2}=1 \quad \forall i \in V
\end{array}
$$

Vector programming relaxation

$$
\begin{gathered}
\max \quad \frac{1}{2} \sum_{\left(\sum_{i j \in E} \in \omega_{i j}\right.} \omega_{i}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right) \\
\vec{v}_{i} \cdot \vec{v}_{i}=1 \quad \forall i \in V \\
\vec{v}_{i} \in \mathbb{R}^{n}
\end{gathered}
$$

SDP randing
Intro to semi-definte progamming
linean programming where vans are entries in psd matrix
Defn If A is a symmerric n by n matrix
then A is a positik semimidinite (psd) mamix $\equiv A \succcurlyeq 0$
yfany of the following equivalent conditions hald
(1) $\forall \vec{C} \in \mathbb{R}^{n}, \quad C^{\top} A c \geqslant 0$
(2) A has nonnegatice engenvalues
(3) $A=V^{\top} V$ for some $m \times n$ matrix V, $m \leq n$
(4) $A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}$ for sore $\lambda_{i} \geqslant 0$ and orthonormil vectors $X_{i} \in \mathbb{R}^{n}$

Semidefinite program (SOP)

$$
\max \circ o \min \sum_{i, j} c_{i j} x_{i j}
$$

subject to $\quad \sum_{i j} a_{i j k} x_{i j}=b_{k}$

$$
\begin{aligned}
& x_{i j}=x_{j i} \quad \forall_{i j} \\
& X=\left(x_{i j}\right) \varepsilon_{0}
\end{aligned}
$$

$$
\equiv \quad \text { Vector progam }
$$

$$
\begin{array}{ll}
\max \text { ar min } & \sum_{i, j} c_{i j}\left(v_{i} \cdot v_{j}\right) \\
\text { Subget to } & \sum_{i, j} a_{i j k}\left(v_{i} \cdot v_{j}\right)=b_{k} \\
& v_{i} \in \mathbb{R}^{n} \quad i=1, \ldots, n
\end{array}
$$

given $X \Rightarrow X=v^{\top} v$; set $v i$ to beince gV

Key fact:
SDPs con be solved to within additive enor ε in time
poly (sizeg inurt, log(k))
in ar discussions, we igure additive enoer ε

Input: $G=(V, E) \quad \omega_{i j} \quad \forall(i, j) \in E$
Goal: partition vertex set so as to max weight of endpts crossing cut,

Vector programming relaxation
$\max \frac{1}{2} \sum_{(i, j) \in E} \omega_{i j}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right)$

$$
\begin{aligned}
& \vec{v}_{i} \cdot \vec{v}_{i}=1 \quad \forall i \in V \\
& \vec{v}_{i} \in \mathbb{R}^{n}
\end{aligned}
$$

Can solve SDP in poly time.
Claim: MAXCUT OPT \leq SOP OPT

But haw to round? get large contribution to OPT when $v_{i} \cdot v_{j}$ very-ve

Random hyperplane rounding
Solve SDP $\longrightarrow v_{1}^{*}, v_{j}^{*}, \ldots, v_{n}^{*}$
pick random hyperplane three origin
partition restices based on which side of hyperplane

Putiinte S y $v_{i} \cdot \vec{r} \geqslant 0$

$$
E(\text { weght frosulting ut }(5,5))=\sum_{(i, j) \in E} w_{i j} \operatorname{Pr}\left((i, i) g^{(t s} \text { att }\right)
$$

(i,j)

$\frac{r^{\prime}}{\left\|r^{\prime}\right\|}$ is unifarly distd avonnd corcle

$\operatorname{Pr}($ (ij) gots cut)
$=$ Pr (unif randern) diam wot badveen
trem

$$
\frac{2 \theta}{2 \pi}=\frac{\theta}{\pi}=\frac{\operatorname{anccos}\left(\vec{v}_{i} \cdot \vec{r}_{j}\right)}{\pi}
$$

$$
\begin{aligned}
& E(\text { wequt frosulting ut }(\mathbf{s}, \bar{s}))=\sum_{(i, j) \in E} \omega_{i j} \operatorname{Pr}(\text { (iij) gits aut) }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\min _{-1 \leqslant x \leqslant 1} \frac{\frac{1}{\pi} \arccos (x)}{\frac{1}{2}(1-x)}=0.878 \ldots . \\
& \left.E\binom{\text { wt }}{\text { wt }} \text { produced by alg }\right) \geqslant 0.878 \text { OPT } \text { SDP } \geqslant 0.878 \text { OPT }
\end{aligned}
$$

Handress
(1) If \exists approx alg for $\operatorname{MAXCUT~with~approxrato~} \geqslant 0.941$,
then $P=N P$.
(2) If the "unique games conjecture" is true, there is no approxaly for maxcut with approx ratio better Than 0.878....

Unique Games Conjecture
$\forall \varepsilon>0, \exists$ prime 9 sit. $(1-\varepsilon, \varepsilon)$ Gap version
 satisfies $>\varepsilon$ fraction output NO
admits no poly time sorn unless $P=N P$

MAX2LIN(9)
9 prime
input. linear equations mod q
w/ unknowns
$x_{1}, \ldots, x_{n} \in\{0,1, \ldots, 9-1\}$
(form $x_{i}-x_{j}=c$)

$$
\begin{gathered}
x_{3}-x_{11} \equiv 87(\bmod 97) \\
x_{7}-x_{22} \equiv 3(\bmod 97) \\
\vdots \\
x_{7}-x_{19} \equiv 56(\operatorname{med} 97)
\end{gathered}
$$

Problem: Find assignment of x_{i}^{\prime} 's that satisfies max possible \#g eons
(3) Int gap of the $[G W]$ SDP $=0.878 \ldots$
(3) Every poly sind LP relaxam of MAxcuT has integrality gap of $\frac{1}{2}$.

Grem graph $G=(V, E)$
\& promise that itis 3-clorable
What is min k s.t. we confind a k-cobring of G in poly tive?

Simple rowets:
(1) A groph with max degue Δ can be cclored with $\leq \Delta+1$ cclors
(2) A 3-cobrable graph can be colved with $O(\sqrt{n})$ colors.

Find a ventex of deg $\geqslant \sqrt{n}$ Use 3 edors to obr 4 \& its neighbors (nughbortod 2 -cabrable)
Rymarect \& its reequburs fram graph $\int_{3 \sqrt{n}}^{3 \sqrt{n}}$

An SDP-based aig

$$
\begin{array}{rlr}
\min _{\text {st. }} & \overrightarrow{\vec{v}}_{i} \cdot \vec{v}_{j} & \leqslant \lambda \\
& \vec{v}_{i} \cdot \vec{v}_{i}=1 & \forall i(i) \in E \\
& \vec{v}_{i} \in \mathbb{R}^{n} &
\end{array}
$$

V_{i} vector comespordy to rodei

$$
\lambda=\max _{\text {iis }}^{\operatorname{sit}(i . j) \in E} \cos \text { (angl bet vi\&vj) }
$$

Claim: if graph is 3-colorable

$$
\lambda \leq-\frac{1}{2}
$$

$\min \lambda$
st. $\vec{v}_{i} \cdot \vec{v}_{j} \leq \lambda \quad \forall(i, j) \in E$
$\vec{v}_{i} \vec{v}_{i}=1 \quad \forall i$
$\vec{v}_{i} \in \mathbb{R}^{n} \quad \forall i$

Clain:
if graph is 3-colorable

$$
\lambda \leq-\frac{1}{2}
$$

Aside
If G has a triangle, then
optrmal soln to soi has $x^{*} \geqslant$ optimal soln to sop has $x \geqslant-\frac{1}{2}$

Proy: Suppose

$$
\begin{aligned}
& \left.0 \leqslant\left(\overrightarrow{v_{1}}+\vec{v}_{2}+\vec{v}_{3}, \overrightarrow{v_{1}}+\vec{w}_{2}+\vec{v}_{3}\right)=\rightarrow-\vec{r}_{3}+\vec{v}_{2} \cdot \overrightarrow{v_{2}}+\vec{v}_{3} \cdot \vec{v}_{3}\right) \\
& +\underbrace{\vec{v}_{1} \cdot \vec{v}_{2}+\vec{v}_{1} \cdot \vec{v}_{3}+\vec{v}_{2} \cdot \vec{v}_{1}+\vec{v}_{2} \cdot \vec{v}_{3}+\vec{v}_{3} \overrightarrow{v_{1}}+\vec{v}_{3} \cdot \vec{v}_{2}}_{\geqslant-3}
\end{aligned}
$$

$\forall G$
$\min \lambda$

$$
\begin{array}{ll}
v_{i} \cdot v_{j} \leq \lambda & \forall(i, j) \in E \\
v_{i} \cdot v_{i}=1 & \forall i \\
v_{i} \in \mathbb{R}^{n} &
\end{array}
$$

Clain:
If $G k$-colorable $\lambda^{*} \leq-\frac{1}{k-1}$ If G has k-leque

Defn $\theta(G)=1-\frac{1}{\lambda^{*}}$
called Lavas Theta in ($=k$ if $G_{\text {is }} k$-culuable \& hao k-leque)

$$
\operatorname{cog}_{G} \# \leq \theta(G) \leq \underset{g G}{\text { chrometc } \#}
$$

Back to coloring 3-clorable gaphs

$$
\begin{aligned}
& V=\{1,2, \ldots, n\} \\
& \\
& 3 \text {-colorable } \\
& \Rightarrow \lambda^{*} \leq-\frac{1}{2} \\
& \equiv y(i, j) \in E \\
& \underset{\text { angle between } v_{i} \& v_{j}}{ } \geq \frac{2 \pi}{3}
\end{aligned}
$$

Algorithm
(1) Solve SDP $(x) \Longrightarrow v_{i}^{*} \quad i=1 \ldots, n$
(2) Choose t random hyperplanes three origin
(3) Color vertices in each region w/ diff color
(4) remove any edges properly colored
(5) Repeat steps $2-4$, $\underbrace{\text { until have proper coloring }}_{\text {withnew colors }}$

One execution of step (2) uses a^{t} colors.
Goal: produce semi-cloring w.p. $\geqslant \frac{1}{2} \quad(* *)$
coloring of nodes st.,
$\leq \frac{n}{4}$ edges have same color at both
\Rightarrow at least $\frac{n}{2}$ ventios properly colored.
Observation: f k-colors sufficient to get semi-coloring,
\Rightarrow graph can be properly colored with $O(K \operatorname{logn})$ colors

What should t be to guarantee $(* *)^{2}$?

$$
\begin{aligned}
& \text { Fix (ii) } \in E \\
& \qquad \begin{aligned}
\operatorname{Pr}(i \text { ijj get same color }) & \leq\left(1-\frac{1}{\pi^{\frac{2 \pi}{3}}}\right)^{t} \\
= & \frac{1}{3 t}
\end{aligned}
\end{aligned}
$$

Let Δ benax degugaph.

$$
\begin{aligned}
& \Rightarrow E(\# \text { edges with same olor }) \leqslant \frac{|E|}{3^{t}} \leqslant \frac{n \Delta}{23^{t}}=\frac{n}{8} \\
& 3^{+}=4 \Delta \equiv t-\log _{3}(+\Delta)
\end{aligned}
$$

By Marioo Irea
Pr \#edare ufsare color $\left.\geqslant \frac{n}{4}\right)=\frac{\frac{n}{\frac{n}{2}}}{\frac{n}{4}} \leqslant \frac{1}{2}$.

$$
\text { ve } \begin{aligned}
O\left(\operatorname{logn} 2^{\log _{3}(+\Delta)}\right)= & \stackrel{\sim}{O}\left(\Delta^{\log _{3} 2}\right) \\
\Delta=\Omega(n) & \sim \\
& \stackrel{\sim}{O}\left(n^{\log _{3} 2}\right) \\
\Longrightarrow= & \tilde{O}\left(n^{0.631}\right)
\end{aligned}
$$

Let Δ^{*} be a parameter

1. Pick a vertex of $\operatorname{deg} \geqslant \Delta^{*}$ \& 3-alo it \&neighbors
2. Repeat step 1 until all vertices have degree $\left.\leq \Delta^{*}\right\} \quad 3 \cdot \frac{h}{\Delta^{*}}$
3. Run SDP-based alg to color rest

$$
\text { or rest } \left.\quad \underset{O}{g^{h}-1 \text { max deg } \Delta^{*}} \quad \Delta^{\log _{3} 2}\right)
$$

choose Δ^{*} to min $\frac{3 n}{\Delta^{*}}+\Delta^{*} y_{3}$
minimized when $\Delta^{\sigma}=n^{\log _{6} 3}$

$$
\Rightarrow \hat{0}^{0}\left(n^{0.39}\right) \text { colors. }
$$

Current best: $O\left(n^{0.199}\right)$
NP-hard to color with 4 colors

Hinge open problem: Is there an alg for 3-coloring a 3-colorable graph that uses polylogn

