Randomized rounding of SDPs
- MAX cut
- 3-coloring

max
LP \text{OPT}
OPT

Worst case ratio
\frac{\text{LP OPT}}{\text{OPT}} \text{ called integrality gap.}
MAXCUT

Inputs: \(G = (V, E) \quad w_{ij} \quad V(i), j \in E \)

Goals: partition vertex set so as to max weight of endpoints crossing cut.

IP formulation of MAXCUT

\[
\begin{align*}
 x_i &= \begin{cases}
 0 & \text{on one side of partition} \\
 1 & \text{on other side}
 \end{cases} \\
 z_{ij} &= \begin{cases}
 1 & \text{edge } (i,j) \text{ cut} \\
 0 & \text{o.w.}
 \end{cases} \\
 \text{max} & \quad \sum_{(i,j) \in E} w_{ij} z_{ij} \\
 z_{ij} &\leq x_i + x_j \quad \forall (i,j) \in E \\
 z_{ij} &\leq 2 - (x_i + x_j) \quad \forall (i,j) \in E \\
 x_i &\in \{0, 1\} \quad \forall i \in V \\
 z_{ij} &\in \{0, 1\} \quad \forall (i,j) \in E
\end{align*}
\]

* no polynomial sized LP relaxation of MAXCUT has integrality gap \(> \frac{1}{2} \).
Another approach:

First, notation change:

\[\forall i: \quad x_i \in \{-1,1\} \]

define \[y_{ij} = x_i x_j \quad \forall i,j \in V \]

\[
\max \sum_{(i,j) \in E} w_{ij} \frac{1}{2} [x_i + x_j]
\]

Exactly captures \text{MAX-CUT}!

\[
\max \sum_{(i,j) \in E} \frac{1}{2} (1 - y_{ij})
\]

\[
y_{ij} = y_{ji} \quad \forall i,j \in V
\]

\[
y_i = 1 \quad \forall i \in V
\]

\text{Idea: enforce} \quad \text{brown by adding linear inequalities to purple.}
Intro to semi-definite programming

Linear programming where vars are entries in psd matrix

Defn If A is a symmetric $n \times n$ matrix then A is a positive semi-definite (psd) matrix if any of the following equivalent conditions hold:

1. $V \in \mathbb{R}^n$, $VA \geq 0$
2. A has nonnegative eigenvalues
3. $A = VTV$ for some $m \times n$ matrix V, $m \geq n$
4. $A = \sum_{i=1}^{n} \lambda_i x_i x_i^T$ for some $\lambda_i \geq 0$ and orthonormal vectors $x_i \in \mathbb{R}^n$
Intro to semi-definite programming

Linear programming where vars are entries in PSD matrix

Defn
If A is a symmetric n by n matrix then A is a positive semi-definite (PSD) matrix if $A \succeq 0$.

Any of the following equivalent conditions hold:
1. $V \in \mathbb{R}^n$, $c^T A c \geq 0$
2. A has nonnegative eigenvalues
3. $A = V^T V$ for some $m \times n$ matrix V, $m \leq n$
4. $A = \sum_{i=1}^n \lambda_i x_i x_i^T$ for some $\lambda_i \geq 0$ and orthonormal vectors $x_i \in \mathbb{R}^n$

Semidefinite program (SDP)

max or min $\sum_{i,j} c_{ij} x_{ij}$

subject to $\sum_{i,j} a_{ijk} x_{ij} = b_k$

$x_{ij} \geq 0$, $V_{i,j}$

$X = (x_{ij}) \succeq 0$

$= \text{Vector program}$

max or min $\sum_{i,j} c_{ij} (v_i \cdot v_j)$

subject to $\sum_{i,j} a_{ijk} (v_i \cdot v_j) = b_k$

$v_i \in \mathbb{R}^n$, $i=1, \ldots, n$

given $X \Rightarrow x_{ij} = \langle v_i, v_j \rangle$

set v_i to be ith column of V

Key facts

SDPs can be solved to within additive error ϵ in time $\text{poly}(\text{size of input}, \log(\frac{1}{\epsilon}))$

in our discussions, we ignore additive error ϵ
Recap:

1. Opt solution to brown + purple = Opt of MaxCut

2. Brown \Rightarrow

\[
\text{max } \sum_{(i,j) \in E} \frac{1}{2}(1-y_{ij})
\]

\[
y_{ij} = y_{ji} \quad \forall ij \in V
\]

\[
y_{ii} = 1 \quad \forall i \in V
\]

These constraints \(y_{ii} = 0 \) in \(V \times \mathbb{R}^n \)

\[
\text{Yields a semidefinite programming relaxation of MaxCut}
\]

3. \(\text{Yields a semidefinite programming relaxation of MaxCut} \)

\[
\text{can be solved efficiently}
\]

\[
\text{using the ellipsoid alg.}
\]

\[
\text{up to error } \epsilon
\]

We can solve this, "round" results \(\Rightarrow \) int soln

\[
\Rightarrow \text{prove that it gives}
\]

\[
\text{pretty good approx.}
\]
Can equivalently write SDP relaxation as a vector program

\[
\max \sum_{(i,j) \in E} \frac{1}{2} (1 - y_{ij}) \\
y_{ij} = y_{ji} \quad \forall i,j \in V \\
y_{ii} = 1 \quad \forall i \in V \\
y = (y_1, \ldots, y_n)
\]

Relaxation check:
\[
\text{OPT} \leq \text{OPT}_{\text{SDP}}(G)
\]

\[
\max \sum_{(i,j) \in E} \frac{1}{2} (1 - v_i \cdot v_j) \\
v_i \cdot v_i = 1
\]

i.e. \(v_i\)'s are unit vectors \(v_i \in \mathbb{R}^n\)
Example

Maximize \(\sum_{(i,j) \in E} w_{ij} \frac{1}{2} (1 - \cos(\text{angle} (v_i, v_j))) \)

\[\leq 0.9 \]

all weights equal

\(\text{OPT} = 4 \)
\(\text{SDP OPT} \approx 4.5 \)

ratio \(\geq \frac{4}{4.5} \approx 0.89 \)

Lovász Umbrella

all edges at angle \(\frac{4\pi}{5} \) (144°)

Lovász umbrella

all edges at angle \(\frac{4\pi}{5} \)

\(\cos \left(\frac{4\pi}{5} \right) = -\frac{1}{2} \approx -0.8 \)

golden ratio

\(1 + \frac{\sqrt{5}}{2} \)
MAXCUT

Inputs $G = (V, E)$, w_{ij}, $V(1) \subseteq E$

Goal: partition vertex set so as to max weight of endpoints crossing cut.

Vector programming relaxation

$$\max \frac{1}{2} \sum_{i \neq j} w_{ij}(1 - \mathbf{v}_i \cdot \mathbf{v}_j)$$

$$\mathbf{v}_i \cdot \mathbf{v}_j = 1 \quad \forall v \in V$$

$$\mathbf{v}_i \in \mathbb{R}^n$$

Can solve SDP in poly time.

Claim $\text{MAXCUT OPT} \leq \text{SDP OPT}$

But how to round? get large contribution to OPT when v_i, v_j very far.

Random hyperplane rounding

Solve SDP $\rightarrow v_1^*, v_2^*, \ldots, v_n^*$

pick random hyperplane thru origin

partition vertices based on which side of hyperplane
1. If there is an approx alg for MAXCUT with approx ratio \(\geq 0.941 \), then \(P = NP \).

2. If the "unique games conjecture" is true, there is no approx alg for MAXCUT with approx ratio better than 0.878.

3. Int gap of the [GW] SDP = 0.878...

4. Every poly sized LP relaxation of MaxCut has integrality gap at most 1.5...
3-Coloring a 3-colorable graph

Given graph $G = (V, E)$ & promise that it is 3-colorable.

What is $\min k$ s.t. we can find a k-coloring of G in poly time?

Simple results:

1. A graph with max degree Δ can be colored with $\leq \Delta + 1$ colors.

2. A 3-colorable graph can be colored with $O(\sqrt{n})$ colors.

Find a vertex v of deg $\geq \sqrt{n}$

Use 3 colors to color v & its neighbors (neighborhood 2-colorable)

Remove v & its neighbors from graph

An SDP-based alg

$$\min \begin{array}{ll}
\text{st.} & \sum v_i v_j \leq \lambda \\
& \sum v_i = 1 \\
& v_i = 1 \\
& v_i \in \mathbb{R}^n
\end{array}$$

Claim:

if graph is 3-colorable

$\lambda \leq -\frac{1}{2}$

$\cos(\frac{\pi}{3}) = -\frac{1}{2}$
\[\min \lambda \]
\[\text{st.} \quad \nu_i \cdot \nu_j \leq \lambda \quad \forall (i, j) \in E \]
\[\nu_i \cdot \nu_i = 1 \quad \forall i \]
\[\nu_i \in \mathbb{R}^n \quad \forall i \]

Claims

if graph is 3-colorable

\[\lambda \leq -\frac{1}{2} \]

Aside: If \(G \) has a triangle, then

optimal soln to SDP has \(\lambda^* \geq \frac{1}{2} \)

Proof: Suppose

\[0 \leq \left(\nu_1^2 + \nu_2^2 + \nu_3^2, \nu_1 \nu_2 + \nu_2 \nu_3 + \nu_3 \nu_1 \right) = \nu_1 \nu_1 + \nu_2 \nu_2 + \nu_3 \nu_3 + \nu_1 \nu_2 + \nu_2 \nu_3 + \nu_3 \nu_1 \]

Algorithm

1. Solve SDP (\(\ast \)) \(\Rightarrow \nu_i^* \quad i = 1, \ldots, n \)
2. Choose \(t \) random hyperplanes thru origin
3. Color vertices in each region w/diff color
4. remove any edges properly colored
5. Repeat steps 2-4 until have proper coloring
One execution of step 2 uses at colors.

Goal: produce semi-coloring w.p. $\geq \frac{1}{2}$ \((\star)\)

- coloring of nodes s.t.,
- $\leq \frac{n}{4}$ edges have same color at both endpoints
 \implies at least $\frac{n}{2}$ vertices properly colored.

Observation: k colors sufficient to get semi-coloring,
\implies graph can be properly colored with $O(k \log n)$ colors

What should t be to guarantee \((\star)\)?

Fix $(i,j) \in E$

Pr($i \& j$ get same color)

$\implies E(\# \text{edges with same color})$
Let Δ^* be a parameter

1. Pick a vertex of deg $\geq \Delta^*$ & 3-color its 3-neighbors \[
\left\{ \begin{array}{c}
\leq 3 \frac{n}{\Delta^*} \text{ colors}
\end{array} \right.
\]

2. Repeat step 1 until all vertices have degree $\leq \Delta^*$

3. Run SDP-based alg to color rest \[
\tilde{O}(\Delta^*^{1.32}) \text{ colors}
\]

Choose Δ^* to minimize \[
\frac{3n}{\Delta^*} + (\Delta^*)^{10.92}
\]

\[\Rightarrow \Delta^* = n^{10.92} \Rightarrow \tilde{O}(n^{0.39})\]

Current best: $O(n^{0.199})$

NP-hard to color with 4 colors

Huge open problem: Is there an alg for 3-coloring a 3-colorable graph that uses polylog n colors?

Next time: will use linear programming duality

- lower bounds on randomized tiling gaps
- design randomized alg for online problems