Concentration of measure (tail bounds)
The more you know about riv. X, the batten the bounds
(1) If only thing yon know is mean \& $X \geqslant 0$ (but nt $=0$)

Markov's Inequality

$$
\operatorname{Pr}(x \geqslant t) \leq \frac{E(x)}{t} \quad t \geqslant 0 \quad\left[\operatorname{Pr}(x \geqslant c E(x)) \leq \frac{1}{c}\right] c \geqslant 0
$$

Corollary

$$
\text { If } 0 \leq X \leq B \Rightarrow \quad \operatorname{Pr}(X \leq t) \leq \frac{E(B-X)}{B-t}
$$

(2) If you know mean μ and variance s^{2}

Chebycher's Inequality

$$
\forall t>0 \quad \operatorname{Pr}\left(|x-\mu| \geqslant t_{\uparrow}\right) \leq \frac{1}{t^{2}}
$$

(3) Sums of indep r.vis

Theorem $\quad x=x_{1}+x_{2}+\cdots+x_{n}$ where x_{i} 's inge \& $x_{i} \in\left[0_{1}\right]$ with $E\left(x_{i}\right)=p$:

$$
\mu=E(x)=\sum_{i=1}^{n} p_{i} \quad p=\frac{\mu}{n}
$$

$$
\begin{equation*}
\operatorname{Pr}(x \geqslant \mu+\lambda) \leq e^{-n H(p+\lambda \| p)} \tag{1}
\end{equation*}
$$

$$
H\left(x \|_{p}\right)=x \ln \left(\frac{x}{p}\right)+(1-x) \ln \left(\frac{1-x}{1-p}\right) \quad \text { relative entropy }
$$

$$
\begin{equation*}
\operatorname{Pr}(X \leq \mu-\lambda) \leq e^{-n H\left(1-p+\frac{\lambda}{n} \|-p\right)} \tag{2}
\end{equation*}
$$

More useful forms (corollaries)

$$
\begin{align*}
& \operatorname{Pr}(x \geq \mu+\lambda) \leq e^{-\frac{\partial \lambda^{2}}{h}} \tag{3}\\
& \operatorname{Pr}(x \leq \mu-\lambda)
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Pr}(x \leq(1-\delta) \mu)=e^{-\frac{\delta_{\mu}^{2}}{2}} \quad 0 \leq \delta=1 \\
& \operatorname{Pr}(x \geqslant(1+\delta) \mu) \leq e^{-\mu[(1+\delta) \ln (1+\delta)-\delta]} \leq \begin{cases}e^{\frac{-\delta^{2} \mu}{2+5}} & \delta>0 \\
e^{-\frac{\delta_{\mu}}{3}} & 0<\delta \leq 1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{L} \leq \mu \\
& \mu \leq \mu_{H}
\end{aligned}
$$

$$
X=X_{1}+X_{2}+\ldots+X_{n}
$$

X_{i}^{\prime} 's indef. X_{i} tales values in $\left[a ; b_{i}\right] \quad E(X)=\mu$

$$
\begin{aligned}
& \operatorname{Pr}(X \leq \mu-\lambda) \\
& \operatorname{Pr}(X \geqslant \mu+\lambda)
\end{aligned}
$$

Comments:

- many different versions (held for Poisson rus, fusion etc) ; well see mare later.
- also told for "negatively correlated r.v.s" [regarely associated]

$$
E\left[e^{t(x+y)}\right] \leq E\left[e^{+x}\right] E\left[e^{+y}\right]
$$

Example

- edges in random spanning trees

One more simple probabilistic toul
Union Bound
Let $E_{1}, E_{2}, \ldots, E_{k}$ be any collection of events in prob space
Then $\operatorname{Pr}\left(E, \cup E_{2} \vee \ldots \vee E_{k}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(E_{i}\right)$

Application l: Balls in Bins
n bins
Throw n balls, one at a time, independently at random into a bin. Prob \rightarrow th bin $=\frac{1}{n}$
$B_{i}=\#$ balls in $i^{\text {th }}$ bin at end.
Theorem $\operatorname{Pr}\left(\max _{i} B_{i} \geq e \frac{\ln n}{\ln \ln n}\right) \leq \frac{1}{n^{c}} \quad$ for sone $c>0$
proof idea: prove that prob that a particulan bin so unlikely to exceed this bound that a union bound gives result

