Minimum Spanning Tree

Given undirected, weighted graph $G=(V, E)$, where we is the weight gedgee Find minimum spanning tree, ie. T that minimizes $\omega(T)=\sum_{e \in T} w_{e}$

Kruskal : sort edges in T weight. Consider ore by one adding if end points are in different connected components

Assume $m \geqslant n$ graph connected. all edgy wits distinct.

$$
n=|V|, m=|E|
$$

Prim: grow out from connected set, taking min
Boruvica: proceeds in rounds
in a round, take lightest edgy from ecchvertex contract connected components
(eliminating self lops \& all but lightest edge Between each pair g ventios
round $O(m)$ $\log n$ rounds

$$
O(m \log n) \quad \text { Fredmar/Tajan } O\left(m \log ^{*} n\right)
$$

Chazelle $O(m \alpha(n))$
inverse Acternain

Today: linear five randmized alg [Karger, Klein, Tarjan.]
illustrates
random sampling

Preliminaries

Cut Rule
\forall cut (s, \bar{s}) in graph, the min weight edge crossing that at must be in MST
suppose for sore cut $(5, \bar{s})$
min wi edge e losing cut is not in ST. $T-f+e$ cheapentree.

Cycle Rule
F ryle in G, the heaviest edge on that cycle connect be in MST
suppose $e \in T$
T-etf cheapen then T

Verificaten

To check that T is a MST must check that $\forall e=(u, v)$

$$
\text { sit. eq } T \Rightarrow w_{e}>w_{T}(u, v)
$$

weight of heaviest edge

Amazingly，this can be dore in $O(m)$ time．Returns 年量s T is MST

Suppose that F is a forest in $G=(V, E)$
Verification alg can be adapted to find all edges e sit． $w_{e} \leqslant w_{F}(u, v)$ where
$w_{F}(u, v)=\left\{\begin{array}{l}\text { weight fy heaviest edge on } u \text { if } v \text { such a in } F \text { th exists } \\ \infty \\ 0 . w .\end{array}\right.$
$O(m)$ time \uparrow

Idea：

Subsample edges．

Find Minimum Spanning Forest F in (V, \tilde{E})
Hope that can remove fem consideration most $E \tilde{E}$

$$
\begin{aligned}
& \left.\hat{E} \rightarrow \frac{\operatorname{MSF}(V, \tilde{E}}{\text { pink }}\right)^{K} \\
& \underbrace{E \sqrt{E} \cup F}_{11}
\end{aligned}
$$

Definition: An edge $e=\left(u_{,},\right)$is F-light for a forest F if
$w_{e} \leqslant w_{F}(u, v)$
weighty heaviest edge on univ path in F [if $\#$ ump path in $F, \omega_{F}(u, v)=\infty$]
candidates
for final MST

Note: all edges in Fare F-light.

$$
\left(V, \frac{\text { Flight edges }}{\text { net to many }}\right)
$$

Key Lemma Let $\underset{\sim}{F}$ be MSF on $\tilde{G}=(V, \tilde{E})$ where \tilde{E} obtained by sampling each edge independently with probability p.

Then $E(\# F$-light edges $) \leq \frac{n-1}{P}$
Proof from the Book! take sample of cedes fill cns \tilde{E}

$$
H=(V, \tilde{E}) \longrightarrow \text { find } F=\operatorname{MSF}(H)
$$

Thought experiment Run Kmskal's alg on all edges
Initialize $\tilde{E}:=\phi$, $F:=\phi$
 of current F
yes: e F-heary
no: e F-light
(2) flip a com with prob p of coming up heads coin heads \Rightarrow add C to \tilde{E} Ye is F-light, add to F
F-light edges edgers in F and anyedgs determine F light contos T

Claim correctly classifies edges as F-light/F-hey correctly computes F (exactly what Kmikal world produce y you just gave A H.)
exp length of each phase

$$
=\frac{1}{p}
$$

edge has been added to F

\#phoses

$$
\leq n-1
$$

$$
\begin{array}{r}
E(\# F-1, g h t \text { eggs }) \leq(n-1) \frac{1}{P} \\
\text { Exp } \# F \text {-light edges }=\frac{\# \text { phases }}{P} \leq \frac{n-1}{P} .
\end{array}
$$

Algorithm (version 1)
(1) Let \tilde{E} be a random sample $f E$ where each
edge included with prob p. $O(m)$ edge included with prob p.
(2) Let $F:=\operatorname{MSF}(V, \tilde{E}) \quad O(m p \log n)$
(3) Find all $E^{\prime \prime} \subseteq E$ that are F-light $O(m)$
(4) Find $\operatorname{MST}\left(V, \quad E^{\prime \prime}\right) \quad O\left(\frac{n}{p} \log n\right)$

$$
n, \frac{n}{p}
$$

Overall expected manning time

$$
\begin{aligned}
& =O(\underline{m p \lg n})+O\left(\frac{n}{p} \log n\right) \\
& m p=\frac{n}{p} \Rightarrow p=\sqrt{\frac{n}{m}} \\
& T(n, m)=O(\sqrt{m n} \log n+m \\
& m \geqslant n)^{\log ^{2} n}
\end{aligned}
$$

Reunsuc version:
(1) Let \widetilde{E} be a random sample where each edge included with prob $\nless \cdot \frac{1}{2}$
(2) Let $F:=\operatorname{MSF}(V, \widetilde{E})$
(3) Find all $E^{\prime \prime} \subseteq E$ that are F-light
(4) Run ald recursively to get. $\operatorname{MST}(V, E ")$

$T(n, m)$ expected runtime ongaph with n vertices, midges

$$
T(n, m) \leq T\left(n, \frac{m}{2}\right)+T(n, 2 n)+O(m)
$$

heed to recce n to

Final version $\operatorname{MsF}(G)$
(1) Run 3 Borwika steps

$$
\Rightarrow H=\left(\omega^{\prime}, E^{\prime}\right)
$$

$$
(m, n) \rightarrow \frac{\left(m, \frac{n}{8}\right)}{O(m)}
$$

2 Boruuka steps $\leq n \leq m$ vertus edge included with prob $\frac{1}{2}$
(3) Let $F:=\operatorname{MSF}\left(V^{\prime}, \tilde{E}\right)$
(4) Find all $E^{\prime \prime} \subseteq E^{\prime}$ that are F-light

Run alg recursively to get. $\operatorname{MST}\left(V^{\prime}, E^{\prime \prime}\right)$

Theorem Exp run time $O(n+m)$

$$
\begin{aligned}
& T(n, m) \triangleq \max _{\substack{G=(V, E) \\
|V|=n,(E \in \leq \leq m}} E\left[T_{G}\right] \\
& \text { TG running tire } \\
& \text { on graph } G \\
& T(n, m) \leq \leq m+E_{m}\left[T\left(\frac{n}{8}, m_{1}\right)\right]+E_{m_{2}}\left[T\left(\frac{n}{8}, m_{2}\right)\right] \\
& \text { Prove byinduction } m n+m \quad \pi(n, m) \leqslant c(n+2 m)
\end{aligned}
$$

$$
\leqslant c m+E\left[c \frac{n}{8}+2 c m_{1}\right]+E\left[c \frac{n}{8}+2 c m_{2}\right]
$$

$$
\begin{aligned}
& E\left[m_{1}\right] \leq \frac{m}{2} \\
& E\left[m_{2}\right] \leqslant \frac{n}{4} \\
& \leqslant c(n+2 m) \\
& E(\text { rumme })=O(m) \\
& \text { Can show runtrus } O(m) \\
& \text { w.p. } \geqslant 1-e^{-\Omega(m)} \quad \text { Chernoff. }
\end{aligned}
$$

