Minimum Spanning Tree Assume m > n graph connected. all edge was distinct. Given undirected, weighted graph n=11 m=1E G=(V,E), where we is the weight dedge e Find minimum spanning tree, i.e. T that minimizes w(T) = Zwe Kruskal: sort edges in T weight, Consider one by one adding if endpoints are in different connected components grow out from connected set faking min Prim : Bornvka: proceeds in rounds in a round, take lightest edge from each vertex contract connected components (eliminating self loops & all but lightest edge between each pair of ventions 19 A O(m)round lugn rounds O(m lag~n) O(mlogn) Fredman Tarjan Chazelle O(m x

(m)

Prekini ranies
Cut Rule
$$V$$
 cut (s, \overline{s}) in graph, the mis weight
edge crossing that cut must be in hist
suppose for some cut (s, \overline{s})
min ut edge e crossing cut is not inst.
T-f+e cheapentree.
Cycle Rule V cycle in G , the heaviest edge on that
cycle Rule V cycle control be in MST
Suppose $e \in T$
T-ext cheapenthen T

F spanning forest for
$$(V, \tilde{E})$$
 which any
E spanning forest for (V, \tilde{E}) which any
Definition: An edge $e=(u,v)$ is F -light for a for dived post
forest F if
 $We \leq W_F(u,v)$
 \downarrow weight g heaviest edge on u may path in F
[if \neq u may path in F , $w_F(u,v)=\infty$] Note: all edges in
Fare F -light.
 $(V, F$ -light edges)
not too many

Key Lemma Let F be MSF on
$$\mathcal{E} = (V, \tilde{E})$$

where \tilde{E} obtained by sampling each
edge independently with probability p.
Then $E(\# F-light edges) \leq \frac{n-1}{P}$
Proof from the Book! take sample of edges flip cones \tilde{E}
 $H=(V, \tilde{E}) \longrightarrow find F= MSF(H)$
Proof $\tilde{E} = \frac{1}{P}$
 $\tilde{E} = \frac{1}{P}$

$$E(\#F-\log t edge) \leq (n-1) \frac{1}{p}$$

Exp # F-light edges = $\frac{\#phases}{p} \leq \frac{n-1}{p}$

•

Overall expected mining time

$$= O(mplogn) + O(\frac{n}{p}logn) + O(m)$$

$$mp = \frac{n}{p} \implies p = \sqrt{\frac{n}{m}}$$

$$T(nm) = O(\sqrt{lmn} logn + m)$$

$$m \ge n \log^{2} n$$

Remove version:

.

$$T(n,m)$$
 expected runtime on graph with n vertices, m edges
 $T(n,m) \leq T(n,m) + T(n,2n) + O(m)$

need to reduce in too

Final version

$$HSF(G)$$

$$(m, n) \rightarrow H=(V, E)$$

$$E[m_{i}] \leq m_{i}$$

$$E[m_{i}] \leq m_{i}$$