Randomized Algorithms \& Probabilistic Analysis of Algorithms....

random bits

$$
\vec{R}=\left(R_{1}, R_{2}, \ldots\right)
$$

Model of computation:
\rightarrow output
$A(x ; \bar{R})$
standard model (TM, RAM) with additional input consisting of stream of penfectly random bits.
\Rightarrow behavior can vary on fixed input - running time on particular input is a random variable

Example of difference:
quick sort with randomly
selected pivots VS QS where input is random π
input drawn from prob distribution
deterministic algorithm A
output
again, performance of algorithm is a random variable
also other random structures: random graphs, random boolean formulas, etc.

Why randomized algs?

- often simplest or fastest
- fun! ! !

Today: simple examples to illustrate

- searching far a witness
- principle of deferred decisions
- fingerprinting
- probabilistic method
- derandomizaton
- method f conditional exps - pairwise independence

Given $n \times n$ matrices A, B, C over field F Told $A B=C$

Goal: to verify this identity

Obvious method: matrix multiplication

$$
O\left(n^{2,372}\right)
$$

[Freivalds Alg] simple \& elegant one of first published uses of randomization in algs

Pick random vector $\vec{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in\{0,1\}^{n}$ each r_{i} indef, equally likely to be 0 or $\frac{1}{\uparrow}$ addititive identity of field
compute $A(B r)=z$
If $\mathrm{Cr}=2$
then output "yes, $A B=C$ "
else output "no"

Field F : Set with 2 operations addition, multiplication has all the properties of \mathbb{R} eeg. Commutativity, or rational ada sociativinty. additive/mult. inverses identity alts for + ,.
Example: $G F(2)$
addition YOR (adaption $\left.\begin{array}{c}\text { mod 2 }\end{array}\right)$ multiplication AND
$A B \neq C$
(lain: Pr (output an incorrect answer) $\leqslant \frac{1}{2}$

Proof: Define $D=A B-C$

Suppose $D \neq 0$
Then \exists entry, say (i, j) st. $d_{i j} \neq 0$

$$
\begin{aligned}
\operatorname{Pr}(\operatorname{Dr}=0) & \leq \operatorname{Pr}\left(\sum_{k} d_{i k} r_{k}=0\right) \\
& =\operatorname{Pr}\left(d_{i j} r_{j}=-\sum_{k \neq j} d_{i k} r_{k}\right) \\
& =\operatorname{Pr}\left(r_{j}=-\frac{\sum_{k ; j} d_{i k} r_{k}}{d_{i j}}\right)
\end{aligned}
$$

Example of simple but powerful principle of deferred decisions
multiple r.v.'s - think of setting some of them first and deferring setting rest until later in analysis
Formally, use law of total probability; condition on values of vars set $1^{\text {st }}$

$$
\begin{aligned}
& \operatorname{Pr}\left(r_{j}=\frac{-\sum_{k \neq j} d_{i k} r_{k}}{d_{i j}}\right) \\
& =\sum_{\substack{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right) \\
\in\{0,1\}^{n-1}}} \operatorname{Pr}(r_{j}=\underbrace{-\sum_{\text {number }} d_{i k} r_{k}}_{\substack{\downarrow \\
d_{i j}}} \mid=\underbrace{\substack{\left(r_{1}, \ldots, r_{i-1}, r_{i+1}, \ldots r_{n}\right) \\
\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right)}}) \operatorname{Pr}(A) \\
& \leqslant \sum \frac{1}{2} \operatorname{Pr}(A)=\frac{1}{2} \\
& \left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right) \\
& \in\{0,1\}^{n-1}
\end{aligned}
$$

If want to reduce probability of error, can do so at expense of small \uparrow in running time
(1) Run alg k times
(2) Output yes if get yes all k times

$$
\operatorname{Pr}(\text { error }) \leq \frac{1}{2^{k}}
$$

by independence of trials.
"Searching for witnesses"

- using randomization to check whether $P(r)=$ True $\forall r$
- Pick random r from suitable set
- If $P(r)$ false \rightarrow "No"
else \rightarrow "Yes"
- works well if density of witnesses that $P(r)$ false high enough

2 types of randomized atgs

Monte Carlo alp - halt in finite time but may ontpnt wrong answer

- One-sided ever Tconfidence with repertion.
- Two-sided engr y true answer yes $\Rightarrow \operatorname{Pr}($ output yes $) \geqslant \frac{1}{2}+\varepsilon$ no $\Rightarrow \operatorname{Pr}($ ontputno $) \geqslant \frac{1}{2}+\varepsilon$

T confidence with repetition \& majority vote.
Claim: If $\int_{\text {alg correct w.p. }}^{\text {decision }} \frac{1}{2}+\varepsilon$ \& we run ct t times \& output majority answer, probability answen correct $\geqslant 1-e^{-2 t \varepsilon^{2}}$

$$
\begin{gathered}
\text { Pr(ourpurt correct } \\
\text { answer } \\
\geqslant \frac{1}{2}+\varepsilon
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& \operatorname{Pr} \text { (majority wrong) } \leqslant \sum_{i=0}^{t / 2}\binom{+}{i}\left(\frac{1}{2}+\varepsilon\right)^{i}\left(\frac{1}{2}-\varepsilon\right)^{t-i} \\
& \leq \sum_{i=0}^{t / 2}\binom{t}{i}\left(\frac{1}{2}+\varepsilon\right)^{t / 2}\left(\frac{1}{2}-\varepsilon\right)^{t / 2}=\left(\frac{1}{4}-\varepsilon^{2}\right)^{t / 2} \underbrace{t / 2}_{i=0}\binom{t}{i} \\
& \leq\left(\frac{1}{4}-\varepsilon^{2}\right)^{t / 2} 2=\left(\frac{1}{4}-\varepsilon^{2}\right)^{t / 2} 4^{t / 2}=(\underbrace{\left(-4 \varepsilon^{2}\right.}_{x})^{t / 2} \leq \varepsilon^{2} t / 2
\end{aligned}-e^{-2 \varepsilon^{2} t} .
$$

Most usgul approx: $\quad 1-x \leq e^{-x}$

Las Vegas agarthms
always output correct answer. runtime is r.v.
Ex: randomized Quicksort

Big open question
Does randomness help in computation?
Can every poly time randomized alg be "de-randomized" with at most polynomial loss in efficiency?

Most usgul approx: $1-x \leq e^{-x}$
e^{x} convex every where \Rightarrow tangent at $x=0$ lies below curve everywhere

$$
\Rightarrow \quad \begin{aligned}
& e^{-x} \geqslant 1-x \\
& \\
& \quad e^{x} \geqslant 1+x
\end{aligned}
$$

Fingerprinting $\quad[M R] 7.4[C G] 2.2 .1$
Alice
A \& B each have large $\dot{D} B$, separated by long distance $\begin{array}{cc}\downarrow & \downarrow \\ a & \text { both } n \text {-bit strings }\end{array}$
want to check if $a=b$?
minimise \#bits trey communicate.

Deterministically n bits of communication necessary

Next: randomized protocol that uses $O(\log n)$ bits of communication
near.

$$
\text { A picks prime } p \in[2 . . x] \text { u.a.r. } \quad \begin{aligned}
& \text { uniformly at } \\
& \text { random. }
\end{aligned}
$$

A sends $(p, \operatorname{amod} p)$ to B
B computes b node
If $a \bmod p=b \bmod p, B$ sends back "Yes", else "no"

Always gives right answer of $a=b$. may give wrong answer if $a \neq b$

Suppose $a \neq b$

$$
\operatorname{Pr}(a \bmod p=b \bmod p)=\operatorname{Pr}(a-b \text { is multiple of } p)
$$

pis ore of prime factors of $a-b$

$$
\left.=\frac{\# \text { distinct primes that divide } a-b}{\# \text { primes in }[2 \ldots x]}\right]
$$

Each prime $\geqslant 2$ cant multiply $>n$ together before get $>2^{n}$

Prime \# Thu:
\# primes $\leq x$

$$
\geqslant \quad \frac{x}{\ln x} \quad \forall x \geqslant 17
$$

$$
\leqslant \frac{n \ln x}{x}
$$

$$
\frac{x \ln x}{c x \ln n}
$$

$$
\text { choosing } x=c n \ln n
$$

\# bits transmitted

$$
\leqslant \quad \frac{1}{c} \frac{\ln x}{\ln h}=\frac{1}{c}+o(1)
$$

$$
=2 \log x=0(\log n)
$$

Example: $n=2^{33} \approx 1$ gigabyte. $\quad x=2^{64}$ (fingerprints are 64 bit words)

$$
\operatorname{Pr}(\text { error })<10^{-9}
$$

Max Cut [MU]6.2.1[CG]1.4.1
simple randomized alg
illustration of probabilistic method
use probabilistic argument to prove non-probabilistic mathematical the

Defn cut in graph: partition of nodes into 2 sets S and \bar{S} An edge crosses cut if it has one endptin S \& one in \bar{S}

MAXCUT
Problem: Given $G=\mid V, E)$ find S that maximizes $\operatorname{cut}(S, \bar{S})$ \#edges

The:
In any graph $G=(V, E), \exists$ cut st. at least $\frac{1}{2}$ edges mos cut.

Proof technique: show that if we pick a random cut, the exp \# of edges that coss cut is $\geqslant \frac{1}{2}|E|$

Pick cut v.a.r. $\quad \forall v \in V$, flip fair coin $\left\{\begin{array}{l}H \rightarrow v \in S \\ T \rightarrow v \in \bar{S}\end{array}\right.$
Let $X_{e}= \begin{cases}1 & e \text { crosses cut } \\ 0 & 0 . w .\end{cases}$

$$
E\left(x_{e}\right)=\operatorname{Pr}(e \operatorname{cosses} m t)=\frac{1}{2}
$$

$X=\sum_{e \in E} X_{e} \#$ edges nosing cut

$$
E(x)=?
$$

$$
E(X)=E\left(\sum_{e \in E} X_{e}\right)=\sum_{e \in E} E\left(X_{e}\right)=\frac{1}{2}|E|
$$

\Rightarrow sample space must contain at least one cut in which $\geqslant \frac{1}{2}$ edges cross cut. O.W, $E(X)<\frac{1}{2}|E|$

Typical example of prob method:

- Not everybody can be below (or above) average
- Collection of objects $\operatorname{Pr}(\exists$ object with property $P)>0$ $\Rightarrow \exists$ object in collection w th property P

MAXCUT
for $i:=1$ to n
Let $R_{i} \in\{0,1\}$
If $R_{i}=0$, put v_{i} in S, else put $v_{i} \in \bar{S}$

$$
G=(V, E) \quad|V|=n \quad|E|=m
$$

$$
\begin{aligned}
& E[\operatorname{Cut}(s, \bar{s})] \geqslant \frac{m}{2} \\
& \uparrow=1, R_{2, \ldots}, R_{n}
\end{aligned}
$$

Fix behavior on input $G=(V, E)$

Idea: walk down tree, making good choice at each step
Observation:

$$
\begin{aligned}
& E\left(C(s, \bar{s}) \mid R_{1}=r_{1}, R_{2}=r_{2}, R_{i}=r_{i}\right) \\
& =\frac{1}{2} E\left(C(S, s) \mid R_{i}=r, R_{a}=r_{2, \ldots}, R_{i}, r_{i}, R_{i+1}=0\right) \longleftarrow \begin{array}{l}
\text { ore g these } \\
\text { is at } \\
\text { west }
\end{array} \\
& +\frac{1}{2} E\left(C(s, s) \mid R_{i}=r, R_{a}=r_{2,}, \ldots, R_{i}=r_{i}, R_{i+1}=1\right)
\end{aligned}
$$

$$
\begin{aligned}
v_{1} \ldots, v_{i} & \rightarrow S_{,} \bar{s} \\
\rightarrow S_{i} & =\left\{v_{j} \mid j \leq i, R_{j}=0\right\} \\
\overline{S_{i}} & =\left\{v_{j} \mid j \leq i, R_{j}=1\right\} \\
U_{i} & =\left\{v_{i+1, \ldots,} v_{n}\right\}
\end{aligned}
$$

$$
\left.E\left(\operatorname{cut}(S, \bar{S}) \mid R_{i}=r_{1}, \ldots, R_{i}=r_{i}\right)=\left|\begin{array}{c}
\operatorname{cut}\left(S_{i}, \bar{S}_{i}\right) \mid \\
\text { ved-gren }
\end{array}\right|+\frac{1}{2} \right\rvert\, \# \text { edge with at least one endpt in } U_{i} \mid
$$

$$
\left.E\left(\operatorname{ut}(S, \bar{S}) \mid R_{1}=r_{1}, R_{2}=r_{2} \ldots, R_{i+1}=r_{i+1}\right)=\left|\operatorname{cut}\left(S_{i+1}, \overline{S_{i+1}}\right)\right|+\frac{1}{2} \right\rvert\, \# \underbrace{\substack{\text { edge } \\ \text { in } V_{i+1}}}_{\text {insp } r_{i+1}}
$$

\Rightarrow suffices to set r_{i+1} to maximize $\left|\operatorname{cut}\left(s_{i+1}, \overline{s_{i+1}}\right)\right|$

To maximize, pick bigger me \Rightarrow The greedy algorithm!.

Corollary The greedy alg is guaranteed to find a cut C size $\geqslant \frac{|E|}{2}$

Method of Conditional Expectation
Consider randomized alg A that uses m random bits. $\operatorname{Pr}\left(A\left(\underset{g o v}{ }\left(R_{1, \ldots}, R_{m}\right)\right)\right.$
sequences of coin tosses \Leftrightarrow binary tree at least, say, $\frac{2}{3}$
"Good" randomized alg \Rightarrow many paths good

Fix behavior on input

R_{1}, \ldots, R_{m} seq of unif, indep random bits
Define $P\left(r_{1}, \ldots, r_{i}\right)=$ fraction of continuations that are good.

$$
\begin{aligned}
& =\operatorname{Pr}\left(A\left(x ; R_{1}, \ldots, R_{m}\right) \operatorname{good} \mid R_{1}=r_{1}, \ldots R_{i}=r_{i}\right) \\
& =\frac{1}{2} P\left(r_{1}, r_{i}, 0\right)+\frac{1}{2} P\left(r_{1}, \ldots, r_{i}, 1\right)
\end{aligned}
$$

$$
\Rightarrow \exists r_{i+1} \in\{0,1\} \text { sit. } \quad P\left(r_{\ldots}, \ldots, r_{i+1}\right) \geqslant P\left(r_{1}, r_{i}\right)
$$

To find good path, just walk down tree \& pick

$$
r_{i} \in\{0,1\} \text { for } i=1 \ldots m \text { s.t. } P\left(r_{1}, \ldots, r_{i+1}\right) \geqslant P\left(r_{1}, r_{i}\right)
$$

At end:

$$
\begin{aligned}
& P\left(r_{1}, r_{m}\right) \geqslant P\left(r_{1}, r_{m-1}\right) \geqslant \ldots \geqslant P\left(r_{1}\right) \geqslant P\left(\underset{\text { good }}{\left.\left(x ; R_{m}, \ldots, R_{m}\right)\right)} \geqslant \frac{2}{3}\right. \\
& \quad \uparrow \\
& \text { Oort } \Rightarrow \text { must be } 1
\end{aligned}
$$

Issue: to do this need to be able to deterministically compute $P\left(r_{1}, r_{i}\right)$; may be infeasible but sometimes works
worked for MAXCUT

Another approach - PRG-s

Back to MAxcuT

Recall
$R_{1}, \ldots R_{n}$ are random bits used by adgontum

Don't need fall independence of R is
Pairwise independence suffices!

$$
\operatorname{Pr}\left(R_{i} \neq R_{j}\right)=\frac{1}{2}
$$

Obsenvation: Suppose B, B_{2}, \ldots, B_{k} are k indep unbiased random bits Then $\forall S \subset[k](s \neq \phi)$, the $2^{k}-1$ random variables $R_{S}=\bigoplus_{i \in S} B_{i}$ are pairwise indep unbiased r andem bits

$$
\oplus \equiv x_{0 R}
$$

Proof: Unbiased
Pairwise-indep: Consider $S \neq T \leq[k]$ nonempty either S, T disjoint J

\Rightarrow Given $\left[\log _{2}(n+1)\right\rceil$ indy randembits $\Rightarrow n$ pairwise indy random bits Anctuen deterministic maxcut Alg \forall sequences of bits $b_{1}, b_{D_{1}}, b_{k} \quad$ where $k=\left\lceil\log _{2}(n+1)\right\rceil$ run randomized MAxCuT Alg using cointosses $\left(r_{S}=\bigoplus_{i \in S} b_{i}\right)_{S \neq \phi}$ choose largest cut obtained

Correctness: $\quad E\left((\operatorname{cut} 1)=\frac{|E|}{2}\right.$

$$
\Rightarrow \exists b_{1} \ldots b_{k} \text { sit. cut has size } \geqslant \frac{|E|}{2}
$$

Running time:

A family \mathcal{H} of frs: $\mathcal{X}=\{h:[n] \rightarrow[m]\}$ is pairwise indep of, when h is chosen
vair. from A the following conditions holt:
(1) $\forall x \in[n], h(x)$ is uniform on $[m]$
(2) $\forall x_{1} \neq x_{2} \in[n], h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are independent

Super important : hashing \& well beyond
Often model hash firs as truly random infeasible to implement domain often exponentially longe,
cant even wite of down

Want explicit family efficiently computable.

