Today: simple examples to illustrate
- searching for a witness
- principle of deferred decisions
- fingerprinting
- probabilistic method
- derandomization
- method of conditional exps
- pairwise independence

Why randomized algs?
- often simplest or fastest
- fun!!!
Matrix Product Verification

Given $n \times n$ matrices A, B, C over field F

Told $AB = C$

Goal: to verify this identity

Obvious method: matrix multiplication $O(n^{3.73})$

[Freivalds Alg] simple & elegant

One of first published uses of randomization in algs

Pick random vector $\mathbf{r} = (r_1, r_2, \ldots, r_n) \in \{0, 1\}^n$

Each r_i indep, equally likely to be 0 or 1

Compute $A(B\mathbf{r}) = z$

If $C \mathbf{r} = z$

then output "yes, $AB = C$"

else output "no"

Running Time: $O(n^3)$

Errors: if $AB = C$ always output yes

if $AB \neq C$ may make an error
Claim: $Pr(\text{output an incorrect answer}) \leq \frac{1}{2}$

Proof: Define $D = AB - C$

Suppose $D \neq 0$

Then \exists entry, say (i,j) s.t. $d_{ij} \neq 0$

\[
Pr(D = 0) \leq Pr(\sum_k d_{ik} r_k = 0)
\]

\[
= Pr(d_{ij} r_j = -\sum_k d_{ik} r_k)
\]

\[
= Pr(r_j = \frac{-\sum_k d_{ik} r_k}{d_{ij}})
\]

Example of simple but powerful principle of deferred decisions

multiple r.v.'s - think of setting some of them first

and deferring setting rest until later

in analysis

Formally, use law of total probability; condition on values of vars set 1st
\[
\Pr \left(r_j = \frac{-\sum \text{dier}_k}{d_{ij}} \right) = \sum_{(x_{i_1}, x_{i_2}, x_{i_3}, \ldots, x_n) \in \{0,1\}^{n-1}} \Pr(r_j = \frac{-\sum \text{dier}_k}{d_{ij}} | (x_{i_1}, x_{i_2}, x_{i_3}, \ldots, x_n) = (x_{i_1}, x_{i_2}, x_{i_3}, \ldots, x_n)) \Pr(A) \leq \frac{1}{2}
\]

\[
\leq \sum \frac{1}{2} \Pr(A) = \frac{1}{2}
\]

If want to reduce probability of error, can do so at expense of

Small \(\uparrow \) in running time

1. Run alg \(k \) times
2. Output yes if get yes all \(k \) times

\[
\Pr(\text{error}) \leq \frac{1}{2^k}
\]

by independence of trials.
"Searching for witnesses"

- using randomization to check whether $P(r) = \text{True}$ for
 - Pick random r from suitable set
 - If $P(r)$ true $\rightarrow \text{"No"}$
 Else $\rightarrow \text{"Yes"}$

- works well if density of witnesses that $P(r)$ false high enough

2 types of randomized algs

- Monte Carlo alg - halt in finite time but may output wrong answer
 - One-sided error
 - $\Pr(\text{output correct}) \geq 1 - e^{-2k^2}$
 - Two-sided error
 - $\Pr(\text{output correct}) \geq \frac{1}{2} + e^{-2k^2}$

Claim: If alg correct w.p. $\frac{1}{2} + e$ & we run d times & output majority answer, probability answer correct $\geq 1 - e^{-2k^2}$

Proof:

$$\Pr(\text{majority wrong}) \leq \sum_{i=0}^{k} \frac{1}{i!} \left(\frac{1}{2} + e \right)^{i} \left(\frac{1}{2} - e \right)^{k-i}$$

$$\leq \sum_{i=0}^{k} \frac{1}{k!} \left(\frac{1}{2} + e \right)^{k} \frac{1}{2^{k-i}}$$

$$\leq \frac{1}{2} \left(\frac{1}{2} + e \right)^{k} \left(1 - e^{k} \right) \frac{1}{2^{k-i}}$$

$$\leq \frac{1}{2} \left(\frac{1}{2} + e \right)^{k} \left(1 - e^{k} \right) \frac{1}{2^{k-i}}$$

$$\leq \frac{1}{2} \left(\frac{1}{2} + e \right)^{k} \left(1 - e^{k} \right) \frac{1}{2^{k-i}}$$

$$\leq \frac{1}{2} \left(\frac{1}{2} + e \right)^{k} \left(1 - e^{k} \right) \frac{1}{2^{k-i}}$$

$$\leq e$$
Most useful approx: $1 - x \leq e^{-x}$

Los Vegas algorithms
always output correct answer. runtime is r.v.

Ex: randomized Quicksort

Big open question

Does randomness help in computation?

Can every poly time randomized alg be "de-randomized" with at most polynomial loss in efficiency?

Most useful approx: $1 - x \leq e^{-x}$

e^x convex everywhere

\Rightarrow tangent at $x=0$ lies below curve everywhere

\Rightarrow $e^{-x} \geq 1 - x$
$e^x \geq 1 + x$
Fingerprinting

A & B each have large DB, separated by long distance
\[a, b \] both n-bit strings

want to check if \(a = b \)?

Deterministically \(n \) bits of communication necessary

Next: randomized protocol that uses \(O(\log n) \) bits of communication

A picks prime \(p \in [2^n] \) u.a.r.

A sends \((p, a \mod p) \) to B

B computes \(b \mod p \)

If \(a \mod p = b \mod p \), B sends back "yes," else "no"

Always gives right answer if \(a = b \).

may give wrong answer if \(a \neq b \)

Suppose \(a \neq b \)

\[\Pr(a \mod p = b \mod p) = \Pr(a-b \text{ is multiple of } p) \]
\[
\frac{\text{\# distinct primes that divide } a-b}{\text{\# primes in } [2..x]} \leq n
\]

Each prime \(\geq 2 \)
Can't multiply \(> n \) together before get \(\geq n^n \)

\begin{align*}
\text{Prime \# Thm:} \\
\text{\# primes } \leq x \\
\geq \frac{x}{\ln x} \quad \forall x \geq 17
\end{align*}

Choosing \(x = c \cdot n \cdot \ln n \)

\[
\frac{n \cdot \ln x}{x} \leq \frac{1}{c} \cdot \frac{\ln x}{\ln n} = \frac{1}{c} + o(1)
\]

\[
\# \text{ bits transmitted} = 2 \cdot \log x = O(\log n)
\]

Example: \(n = 2^{32} \) \(\sim \) 1 gigabyte \(\quad x = 2^a \) (fingerprints are 64-bit words)

\[\Pr(\text{error}) < 10^{-a}\]
MaxCut \cite{MU04,CG98}:

- Simple randomized alg
- Illustration of probabilistic method

Use probabilistic argument to prove non-probabilistic mathematical thm:

Defn: cut in graph: partition of nodes into 2 sets S and \overline{S}

An edge crosses cut if it has one endpoint in S and one in \overline{S}

Thm:

In any graph $G=(V,E)$, \exists cut S s.t. at least $\frac{1}{2}$ edges cross cut.

Proof technique: show that if we pick a random cut, the expected number of edges that cross cut is $\geq \frac{1}{2}|E|$

Pick cut u.a.r. for $\forall v \in V$, flip fair coin \begin{align*} H &\rightarrow v \in S \\ T &\rightarrow v \in \overline{S} \end{align*}

Let $X_e = \begin{cases} 1 & \text{e crosses cut} \\ 0 & \text{o.w.} \end{cases}$

$$X = \sum_{e \in E} X_e \quad \text{# edges crossing cut}$$

$$E(X) = \frac{1}{2} |E|$$
\[E(X) = E(\sum_{e \in E} x_e) = \sum_{e \in E} E(x_e) = \frac{1}{2} |E| \]

\[\Rightarrow \text{sample space must contain at least one cut in which } \geq \frac{1}{2} \text{ edges cross cut. O.w., } E(X) \leq \frac{1}{2} |E| \]

Typical example of prob method:

- Not everybody can be below (or above) average

- Collection of objects \(\Pr(\exists \text{ object with property } P) > 0 \)

\[\Rightarrow \exists \text{ object in collection with property } P \]
Ideas: walk down tree, making good choice at each step

Observation:
$$E(C(s, \overline{s}) | R_1=r_1, R_2=r_2, \ldots, R_n=r_n)$$
$$= \frac{1}{2} E(C(s, \overline{s}) | R_1=r_1, R_2=r_2, \ldots, R_n=r_n, R_{\overline{n}}=0)$$
$$+ \frac{1}{2} E(C(s, \overline{s}) | R_1=r_1, R_2=r_2, \ldots, R_n=r_n, R_{\overline{n}}=1)$$

$$\rightarrow S_i = \{ v_j \mid j < i, R_j = 0 \}$$
$$\overline{S}_i = \{ v_j \mid j < i, R_j = 1 \}$$
$$U_i = \{ v_{i+1}, \ldots, v_n \}$$
\[E\left(\text{cut}(S, \overline{S}) \mid R, \text{cut } R, \text{cut } \overline{R} \right) = \left| \text{cut}(S, \overline{S}) \right| + \frac{1}{2} \left| \text{edges with at least one endpt in } U_i \right| \]

\[\text{red edge, green edge, yellow edge} \]

\[E\left(\text{cut}(S, \overline{S}) \mid R, \text{cut } R, \text{cut } \overline{R} \right) = \left| \text{cut}(S_i, \overline{S}_i) \right| + \frac{1}{2} \left| \text{edges with one endpt} \right| \]

\[\text{in } U_i \]

\[\Rightarrow \text{ suffice to set } r_{i+1} \text{ to maximize } \left| \text{cut}(S_i, \overline{S}_i) \right| \]

To maximize, pick biggest one \(\Rightarrow \) The greedy algorithm!

Corollary The greedy alg is guaranteed to find a cut of size \(\geq \frac{|E|}{2} \)
Method of Conditional Expectation

Consider randomized alg A that uses m random bits. $\Pr(A(x; R_1, R_m) \text{ good}) \geq \frac{2}{3}$ at least, say.

Sequences of coin tosses \iff binary tree

"Good" randomized alg \implies many paths good

$$\begin{align*}
R_1, \ldots, R_m \text{ seq of unif, indep random bits} \\
\text{Define } P(r_i, r_i) &= \text{fraction of continuations that are good.} \\
&= \Pr(A(x; R_1, \ldots, R_m) \text{ good} \mid R_i = r_i, \ldots, R_i = r_i) \\
&= \frac{1}{2} P(r_i, r_i, 0) + \frac{1}{2} P(r_i, r_i, 1)
\end{align*}$$
\[\implies \exists r_{i+1} \in \{0,1\} \text{ s.t. } P(r_{i+1}, r_i) > P(r_i, r_i) \]

To find good path, just walk down tree & pick
\[r_{i} \in \{0,1\} \text{ for } i = 1..m \text{ s.t. } P(r_{i+1}, r_i) > P(r_i, r_i) \]

At end:
\[P(r_{i}, r_m) > P(r_{i}, r_{m-1}) > \ldots > P(r_i) \geq P(A(x; r_{i+1}, r_m)) \geq \frac{2}{3} \]

\[\uparrow \]

0 or 1 \implies must be 1

Issue: to do this need to be able to deterministically compute \(P(r_{i}, r_i) \); may be infeasible

but sometimes works

worked for MAX CUT
Another approach - PRGs

Recall $E(\text{cut}(s\lambda)) = \sum_{\text{random partition}} \Pr(R_i \neq R_j) = \frac{1|E|}{2}$, R_1, \ldots, R_n are random bits used by algorithm

Don't need full independence of R_i's
Pairwise independence suffices! $\Pr(R_i \neq R_j) = \frac{1}{2}$

Observation: Suppose B_1, B_2, \ldots, B_n are k indep unbiased random bits
Then $\forall S \subseteq [n] \ (s \neq \emptyset)$, the 2^k-1 random variables $R_S = \bigoplus_{i \in S} B_i$ are pairwise indep unbiased random bits
$\bigoplus = \text{XOR}$
Proof: Unbiased

Pairwise-indep. Consider $S \neq T \subseteq [k]$ nonempty

- Either $S \cap T$ disjoint \checkmark
 - $S \cap T \neq \emptyset$ \quad $\Pr(R_T = 1 | R_S) = \frac{1}{2}$

\Rightarrow Given $\lceil \log(n^2) \rceil$ indep random bits \Rightarrow n pairwise indep random bits

Another deterministic MAXCUT Alg

- Any sequence of bits b_1, b_2, \ldots, b_k where $k = \lceil \log(n^2) \rceil$
- Run randomized MAXCUT Alg using coin tosses $(r_S = \oplus b_i)_{S \neq T}$
- Choose largest cut obtained

Correctness: $E(\text{cut} - 1) = \frac{|E|}{2}$

\Rightarrow $\exists b_1, \ldots, b_k$ s.t. cut has size $\geq \frac{|E|}{2}$

Running time:
A family \mathcal{H} of functions $f(x): \mathcal{H} = \{h: [n] \rightarrow [m]\}$ is pairwise independent, when h is chosen uniformly at random from \mathcal{H}, the following conditions hold:

1. $\forall x \in [n], \ h(x)$ is uniform on $[m]$
2. $\forall x_1, x_2 \in [n], \ h(x_1)$ and $h(x_2)$ are independent

Super important: hashing & well beyond

Often modeled hash funs as truly random

Infeasible to implement

Domain is often exponentially large,
can't even write it down

Wanted explicit family, efficiently computable.