
CSE525: Randomized Algorithms and Probabilistic Analysis April 30, 2013

Lecture 8
Lecturer: Anna Karlin Scribe: Jonathan Shi, Dimitrios Gklezakos

1 Online bipartite matching

Recall from last time we introduced the online bipartite matching problem and gave an algorithm to solve a
fractional version of the problem with competitive ratio 1− 1/e. In the online bipartite matching problem,
we are given a bipartite graph G = (L,R,E), where the vertices in R are revealed to us one at a time along
with the edges from that vertex to L. Once each vertex in R is revealed, we must immediately select an edge
to that vertex to be a part of a matching M or permanently discard all the revealed edges, with the goal of
maximizing the size of M . The fractional version of the problem is obtained by taking the linear relaxation
of the integer program that corresponds to this problem.

1.1 RANKING algorithm

The RANKING algorithm can be framed in two equivalent ways. In the interpretation that makes for
convenient analysis, the algorithm computes the solution to the fractional problem by solving the linear
relaxation in Figure 1, and then uses those fractional values as the probability that each edge will be put
into our matching. Equivalently, the algorithm imposes a random order Π on the vertices in L and then
when v arrives from R, v is matched with its unmatched neighbor that is lowest in Π.

max
∑

(i,j)∈E

xij

∑
j∈N(i)

xij ≤ 1 ∀i ∈ L

∑
i∈N(j)

xij ≤ 1 ∀j ∈ R

xij ≥ 0 ∀(i, j) ∈ E

Figure 1: Linear relaxation for online bi-
partite matching.

min
∑
i∈L

αi +
∑
j∈R

βj

αi + βj ≥ 1 ∀(i, j) ∈ E

αi ≥ 0 ∀i ∈ L

βj ≥ 0 ∀j ∈ R

Figure 2: Dual of the previous linear pro-
gram.

1.2 Analysis of algorithm

Our analysis of this algorithm will be very similar to the argument for the fractional case. Namely, we will
construct a dual solution for each possible outcome of the randomized primal, and show that the primal P
and the dual D satisfy the properties:

1. P ≥ cD for some c, where P and D are understood to stand in for the values of their objective
functions.

2. D is feasible in expectation. That is, for each constraining inequality, in the dual problem, the expected
values of the dual variables satisfy that inequality.

Theorem 1. If P ≥ cD and D is feasible in expectation, then E[P] ≥ c ·OPT.

8-1

Proof If P ≥ cD always, then E[P] ≥ c · E[D]. Also D is feasible in expectation, so that linearity of
expectation allows us to conclude that E[D] ≥ OPT since the expectations of the dual variables form a
feasible solution. Hence E[P] ≥ c · E[D] ≥ c ·OPT.

We construct the dual solution by first randomly constructing the primal solution and then setting dual
variables α̂i and β̂j as follows, using some fixed increasing function g : [0, 1]→ [0, 1] with g(1) = 1:

• Set α̂i = 1
cg(Yi) and β̂j = 1

c (1− g(Yi)), if xij = 1 (equivalently, if i is matched to j in the primal).

• Set α̂i = 0, if xij = 0 for all j (equivalently, if i is unmatched).

• Set β̂j = 0, if xij = 0 for all i (equivalently, if j is unmatched).

This satisfies the property that P ≥ cD since, for every (i, j) that is matched, xij (and hence P) increases
by 1, while α̂i + β̂j (and hence D) increases by 1/c.

To show that D is also feasible in expectation, we need it to satisfy the only nontrivial constraint, given
by:

(∀(i, j) ∈ E) E[α̂i + β̂j] ≥ 1.

So consider a fixed edge (i, j), and fix a value for Yi. Let G−i denote the problem instance after the
vertex i and all incident edges have been removed, and consider running the algorithm on G−i. Then the
vertex j will either be matched to some i′ ∈ L or it won’t be matched. Let y−i = Yi′ when j is matched, or
y−i = 1 when j is not matched. Let also β−ij be the value of βj when the algorithm is run on G−i; so that
β−ij = 1

c (1 − g(y−i)). Finally, let U(G, j′) denote the set of unmatched elements of L in G when j′ ∈ R is
up to be matched.

Then we can show the following:

Lemma 1. In parallel executions of the algorithm on G and G−i, for each vertex jk ∈ R, U(G, jk) =
U(G−i, jk) ∪ {i′} for some i′ ∈ L. Also, either the execution on G matches jk to a vertex of equal or lesser
Y -value than the execution on G−i, or the execution on G−i doesn’t match jk at all.

Proof In the base case, j1 arrives before any of L has been matched and we have U(G, j1) = U(G−i, j1)∪
{i}.

In the inductive case, some jk arrives with U(G, jk) = U(G−i, jk)∪ {i′}. Then the execution on G could
match jk either to i′ or to some i′′ ∈ U(G−i, jk). If the execution on G matched jk to some i′′ 6= i′, then it
must be that Yi′′ is the lowest Y -value in U(G−i, jk) ∩N(k), so that the execution on G−i also matched jk
to i′′, and hence U(G, jk+1) = U(G−i, jk+1) ∪ {i′}. On the other hand, if the execution on G matched jk to
i′, then i′ must’ve had a lower Yi′ value than anything in U(G−i, jk), so that the execution on G−i matched
jk to some i′′ with Yi′′ > Yi′ , and U(G, jk+1) = U(G−i, jk+1) ∪ {i′′}.

Lemma 2. If Yi < y−i, then the vertex i will be matched in the original problem.

Proof Consider what happens when j arrives to be matched in the parallel executions on G and G−i.
Assume that i is not matched yet in G when this happens. This means that the executions on G and G−i
have been identical up to this point. Let i′ be the vertex that j is matched to in G−i. Then y−i = Yi′ . If
Yi < y−i, then Yi < Yi′ so that j gets matched to i instead in the execution on G.

Lemma 3. β̂j ≥ β−ij .

Proof Refer to Lemma 1 to conclude that when j is being matched in the G and G−i instances, either
the G−i execution does not match j at all, so that y−i = 1 and β̂j ≥ 0 = 1

c (1 − g(y−i)) = β−ij , or the G−i
execution matches j to an i′ and the G execution matches j to an i′′ such that Yi′′ ≤ Yi′ and:

β̂j =
1− g(Yi′′)

c
≥ 1− g(Yi′)

c
= β−ij ,

where we used the fact that g is an increasing function.

8-2

These lemmas show that D is feasible in expectation. First, α̂i = 1
cg(Yi) if i is matched, and by

Lemma 2, i is matched whenever Yi < y−i, so that E[α̂i] ≥
∫ y−i

0
1
cg(y) dy. Second, by Lemma 3 we have

β̂j ≥ β−ij = 1
c (1 − g(y−i)). If we now set c = 1 − 1

e and g(y) = ey−1, meeting all the criteria for g and
satisfying

∫
g(y) dy = g(y) + C, we find that:

EYi
[α̂i + β̂j] ≥

g(y−i) + C − g(0)− C + 1− g(y−i)
c

=
1− g(0)

c
=

1− 1
e

1− 1
e

= 1,

for all possible choices of i, j, and Yi.

1.3 Significance

The analysis of the RANKING algorithm presented here was first described by Devanur, Jain, and Kleinberg
in 2013. It significance stems from the fact that, not only is it simpler than any previous proof of correctness
for this algorithm, it also introduced the novel approach of bounding the approximation with a dual solution
is only feasible in expectation. This allowed us to bound the integer randomized rounding solution using an
dual linear program, unifying the fractional and integral analyses of this integer programming problem in a
completely new way.

A related problem which does not yet have a similar analysis is as follows: A list of integers {Bi} are taken
to represent the daily budgets of some advertisers, where advertiser i bids bij to show their advertisement
on a particular search j. The problem is then to determine which bids to take in an online algorithm in
order to maximize our income for the day. This problem currently has a 1-(1/e)-approximation achieved in
the fractional setting, but nothing better than a 1/2-approximation for the integral one.

2 Semi-definite programming

Semi-definite programming is linear programming where variables are entries in a symmetric psd matrix. A
psd matrix is the analogue of a positive number for matrices. The following statements are equivalent:

1. X is a psd matrix (denoted by X � 0)

2. ∀y ∈ Rn, yTXy ≥ 0

3. X has non-negative eigenvalues

4. ∃V : V TV = X. This is called the Cholesky decomposition of a matrix and is similar to taking its
root.

5. X =
∑n
i=1 λiwiw

T
i , where w’s are orthonormal vectors and λ’s are non-negative.

SDPs are a special case of convex programming. We can solve SDPs to arbitrary additive error ε in time
poly(size(input), log(1

ε)). Formulation (for maximization problems):

maximize
∑
i,j

cijxij

s.t.

∀k,
∑
i,j

aijkxij = bk

∀i, j, xij = xji

X � 0

or vector formulation:
maximize

∑
i,j

cij(vi · vj)

8-3

s.t.

∀k,
∑
i,j

aijk(vi · vj) = bk

∀i, vi ∈ Rn

2.1 MAXCUT revisited (Goemmans-Williamson)

Let zij = 1 if edge (i, j) is cut. Let xi ∈ {0, 1} denote the side of i in the cut. Then zij = 1 only if xi 6= xj .
Consider the following integer program:

maximize
∑

(i,j)∈E

wijzij

s.t.

∀(i, j) ∈ E, zij ≤ xi + xj

∀(i, j) ∈ E, zij ≤ 2− (xi + xj)

∀(i, j) ∈ E, zij ∈ {0, 1}

∀i ∈ V, xi ∈ {0, 1}

For every graph, the fractional solution puts 1
2 on everything! We can formulate MAXCUT via quadratic

programming:

max(
1
2

∑
(i,j)∈E

wij [1− yiyj])

subject to:
yi · yj = 1

yi ∈ {0, 1}

Replace yi by a vector in Rn. Then we get an SDP, where the solution will give vectors on the sphere. This
is a relaxation.

8-4

