
CSE525: Randomized Algorithms and Probabilistic Analysis April 23, 2013

Lecture 7
Lecturer: Anna Karlin Scribe: Svetoslav Kolev, Tanner Schmidt

1 Congestion Minimization

In congestion minimization we are given a directed graph and a set of pairs of nodes that we wish to connect
with (possibly non-disjoint) paths while minimizing the maximum use of any edge.

Formally we are given a directed graph G = (V,E) and a set of pairs (si, ti) for i = 1, . . . , k. We need
to compute a path Pi from si to ti for i = 1, . . . , k, such that the congestion C is minimized where C =
maxe∈E number of Pi contain e.

The problem is NP-hard, so we naturally turn to a randomized algorithm. We will developed an approx-
imation algorithm using randomized rounding.

2 Linear Program Formulation

First we formulate a fractional version of the problem (multicommodity flow) as a linear program.
Our variables are the congestion C and fi(e) where e ∈ E, i = 1, . . . , k. We represent the flow of path

Pi on edge e with fi(e).Let also OUTv and INv denote the sets of outgoing and incoming edges to v. The
linear program is:

minimize C

subject to
∑
e∈INv

fi(e) =
∑

e∈OUTv

fi(e) ∀v 6= si, ti

∑
OUTsi

fi(e) = 1

∑
i

fi(e) ≤ C ∀e

fi(e) ≥ 0 ∀i, e

The first constraint ensures conservation of flow. The second ensures we route 1 unit of flow from si to
ti. The third is the congestion bound. The fourth ensures positive flow.

Solve the Linear Program and obtain f∗i (e) and C∗. We note here that C∗ ≤ OPT congestion for the
integer version.

3 Decomposition into discrete paths

Next we decompose the flows f∗ into discrete paths. Let

Psi,ti = {P |P is a path from si to ti}

be the set of all paths from si to ti. For each i we find a set P ∗i ⊆ Psi,ti and f ip ∀p ∈ P ∗i , subject to:

|P ∗i | is polynomial∑
p∈P∗

i |e∈p

f ip = f∗i (e)

7-1

∑
p∈P∗

i

f ip = 1.

Basically we must decompose the fractional flow into a polynomial number of discrete paths (not neces-
sarily disjoint). The flow on path p is f ip and we want the sum of the flow on all paths to be 1. Also, for
each i the total flow on each edge e (summed over all paths containing it) must be equal to the one found
from the linear program f∗i (e).

One way to find such a path is to repeatedly perform the following graph search. Consider all the edges
with f∗i (e) and find a path p from si to ti. Set f ip = min

e∈p
f∗i (e). Remove f ip units of flow from all edges in p.

Then we repeat to find a new path.
We then have a set P ∗i of paths that connect the pairs si → ti. Next we pick path pi ∈ P ∗i with probability

f ip. Output pi, . . . , pk as a solution to our original problem.

4 Analysis

4.1 Approximation ratio

Theorem 1.

Pr (any edge has congestion ≥ 6 log n

log logn
C∗) ≤ 1

n

Proof
Take α = 6 logn

log logn . Then

Fix e = (u→ v)

Define Xi(e) =

{
1 if e ∈ pi
0 otherwise

Then E(Xi) =
∑

p∈Pi|e∈p

f ip = f∗i (e).

Let X(e) =

k∑
i=1

Xi(e). Then E(X(e)) =

k∑
i=1

f∗i (e) ≤ C∗.

Use Chernoff bound with C∗ upper bound on µ.

Pr (X(e) ≥ (1 + δ)C∗) ≤ e−C
∗[(1+δ) ln(1+δ)−δ].

Take (1 + δ)C∗ = αC∗ so that 1− α = −δ. Then

Pr(X(e) ≥ αC∗) ≤ e−C
∗[α lnα+1−α]

≤ e−α(lnα−1)

≤ −(
6

2
lnn)

≤ 1

n3
.

Here we used C∗ ≥ 1 for the second inequality and α = 6 lnn
ln lnn so that

α(lnα− 1) =
6 lnn

ln lnn
[ln 6 + ln lnn− ln ln lnn− 1]

7-2

and

[ln 6 + ln lnn− ln ln lnn− 1] ≥ ln lnn

2

as before.

Pr (any edge has congestion ≥ αC∗) ≤
∑
e

Pr(X(e) ≥ αC∗)

by the union bound. Then
∑
e
Pr(X(e) ≥ αC∗) ≤ n2 1

n3 = 1
n .

4.2 Optimality analysis

The algorithm achieves optimal approximation since there exist graphs with OPT
C∗ = Ω(logn

log logn) (Integrality

gap). Therefore we cannot do better with such an approach.
Hardness (directed graphs). Every polynomial time algorithm has Ω(logn

log logn) approximation ratio. As-

suming NP 6⊆ BPTIME(nO(log logn))
If C∗ ≥ c lnn then with high probability congestion on every edge ≤ C∗ +

√
cC∗ lnn.

Pr(X(e) ≥ C∗ +
√
cC∗ lnn) ≤ e−C

∗δ2
3 = e−

−c lnn
3 = n−

c
3

(1 + δ)C∗ ⇒ δ =

√
c lnn

C∗

Take c = 9. Then Pr(edge e is bad) ≤ 1
n3 . Therefore, Pr (there exists a bad edge) ≤ 1

n by the union
bound.

Observe that C∗ +
√
cC∗ lnn = O(C∗) if C∗ = Ωlnn.

5 Bipartite Matching

The bipartite matching problem is a classic computer science problem in which we wish to find an optimal
matching of vertices from opposing sides of a bipartite graph. More formally, let’s call the graph G =
(L,R,E), where L represents the set of vertices in the ‘left’ partition, R represents the set of vertices in
the ‘right’ partition, and E is the set of edges spanning the partition. We wish to find a subset of E such
that each vertex lies on at most one edge, which defines a matching. Often, the matching is optimized by
maximizing the size of the subset, or maximizing the total weight of the subset if the edges are weighted.

6 Online Bipartite Matching

The online version of the bipartite matching problem has practical (and high-value) applications to problems
such as internet ad allocation, where the advertisers and demand for each advertiser is known a priori, but
the page views are not.

In the online formulation, L is known ahead of time, but vertices in R arrive one at a time. When vertex
vj ∈ R arrives, we learn which vertices in L are neighbors to vj , and we must make an irrevocable decision
as to which of the neighbors to match it to (if any).

7-3

7 Greedy Algorithm

Assume we are solving the online bipartite matching problem and we want to maximize the size of our
matching. The most obvious greedy algorithm would simply match each incoming vertex to any of its
neighbors at random.

Claim 2. If OPT is the optimal online matching, the greedy algorithm will always find a matching of size
≥ 1

2OPT.

Proof Let’s analyze the algorithm by attributing $1 to each matching. Therefore, if the optimal solution
to the offline algorithm matches m vertices, it has a value of $m.

For the greedy algorithm, when incoming vertex vj ∈ R is matched to vertex vi ∈ L, imagine putting
half of the $1 for edge (i, j) on vi and half on vj , such that each has a value of $0.50.

Now consider only edges (i, j) such that vertices vi and vj were matched by the optimal offline solution,
which thus contributed $1 to OPT. There are only two possible outcomes for the greedy algorithm. The
first is that vi and vj each have $0.50, and thus the value for the edge is the same for the greedy algorithm
and the optimal offline algorithm. The second is that only one of the two vertices has $0.50, in which case
the value for the edge is half that of the optimal offline algorithm. We know that it is not possible for both
to have no money, because in that case, the greedy algorithm could have matched vj . Therefore, since the
worst case value for each edge is half that of the optimal value, the solution of the greedy algorithm must
be 1

2OPT.

8 Competitive Ratio

When analyzing the performance of online algorithms, it’s often useful to talk about the competitive ratio
of the algorithm, which compares the performance of the online algorithm to an optimal offline algorithm.
If I is the set of all possible instances of the problem, the competitive ratio is defined by:

c.r. = min
I

value of solution to online algorithm

value of optimal offline solution

Therefore, what we have shown above is that the greedy algorithm for online bipartite matching has a
competitive ratio of 1

2 .

9 Fractional Matching

We can recast the integral online bipartite matching problem as a fractional problem. Define variable xij
for each edge (i, j). In the integral problem, xij takes value 1 if vertex vi is matched to vj , and 0 otherwise.
In the fractional case, we allow xij to take fractional values, subject to the following additional constraints:

∀i,jxij ≥ 0

∀j|vj∈R
∑

i∈N(j)

xij ≤ 1

∀i|vi∈L
∑

j∈N(i)

xij ≤ 1

where N(j) defines the neighborhood of vj .

Claim 3. If A is a randomized algorithm for integral online bipartite matching, ∃ a deterministic fractional
algorithm D s.t. ∀ instance I,

∑
i,j x

D
ij(I) = E(

∑
i,j x

A
ij(I)).

7-4

Proof We wish to define a deterministic fractional algorithm D which simulates the performance of our
randomized integral algorithm A. To do this, when vj arrives, we simply assign it fractionally according to
the probability distribution of the assignment in the randomized algorithm, i.e. set xDij = Pr(XA

ij = 1). We,
of course, have:

∀i
∑

j∈N(i)

XA
ij ≤ 1,

which means:
∀iE[

∑
j∈N(i)

XA
ij] ≤ 1

which in turn tells us:
∀i

∑
j∈N(i)

xDij ≤ 1.

∑
(i,j)∈E

xDij = E[
∑

(i,j)∈E

XA
ij] = E[performance of A]

In other words, the expected value of the integral randomized solution falls within the constraints of the
deterministic fractional algorithm, and therefore this strategy is valid, and the deterministic fractional algo-
rithm finds a solution with value equal to the expected value of the randomized algorithm.

Given that we now know that, for any randomized algorithm for online integral bipartite matching, we
can define a fractional deterministic algorithm that ‘simulates’ it’s behavior, we know that any upper bound
on the competitive ratio of any deterministic fractional algorithm will also provide an upper bound on the
competitive ratio of any randomized algorithm.

7-5

