
CSE525: Randomized Algorithms and Probabilistic Analysis 04/04/2013

Lecture 2
Lecturer: Anna Karlin Scribe: Sam Hopkins, James Youngquist

1 Derandomizing via the Method of Conditional Expectation

[This section follows the presentation in Vadhan, Pseudorandomness.]
Consider a randomized algorithm A that uses m random bits, which we consider to be random variables

R1, . . . , Rm, and let us suppose that A is successful at least 2/3 of the time—that is, for every input x,

Pr
R1,...,Rm

[A(x,R1, . . . , Rm) is “good”] ≥ 2

3
.

Suppose we want to derandomize A—that is, give a deterministic variant of A which succeeds with probabilty
1 on every input. Sometimes we can do this using the method of conditional expectation.

We can think of A as a binary tree which, given x, branches on the sampled value of each random bit Ri

in turn. Paths in this tree correspond to different possible random strings R1, . . . , Rm that could be sampled
by A, and leaf nodes at level m + 1 are labeled by outputs. The fact that A succeeds with probability at
least 2/3 means that at least 2/3s of the leaf nodes are good outputs for the input x.

The idea is now to produce a deterministic algorithm that traverses this tree from the root to a leaf,
which, when encountering the branch at level i, (corresponding to the point at which the algorithm uses Ri)
chooses a direction (i.e. a value for Ri) which leads to a good output. What criterion can we use to choose
a good direction?

Where r1, . . . , ri ∈ {0, 1} corresponds to a partial root-leaf path in the tree terminating at node n, let
P (r1, . . . , ri) be the fraction of leaves in the subtree below n which are good outputs. Formally,

P (r1, . . . , rn) = Pr[A(x,R1, . . . , Rm) is good|R1 = r1, . . . , Ri = ri]

=
1

2
P (r1, . . . , ri, 0) +

1

2
P (r1, . . . , ri, 1)

where the last equality follows because the subtrees below n’s children have equally-many nodes. It follows
immediately that there is a choice ri+1 ∈ {0, 1} for Ri+1 so that P (r1, . . . , ri+1) ≥ P (r1, . . . , ri). To find a
good path in the tree, then, it suffices at each branch to pick such an r ∈ {0, 1}. Then at the end of the
walk,

P (r1, . . . , rm) ≥ P (r1, . . . , rm−1) ≥ . . . ≥ P (r1) ≥ Pr[A(x,R1, . . . , Rm) is good] ≥ 2

3
.

2-1

Since P (r1, . . . , rm) is either 0 or 1, it must be 1.
In order to make this work, we need to be able to deterministically and efficiently calculate P (r1, . . . , ri).

This cannot always be done, but it will actually work for our randomized Max-Cut algorithm.

1.1 Derandomizing Max-Cut

Let’s recall our simple randomized algorithm for Max-Cut. Given a graph G = (V,E) with V = {v1, . . . , vn}
and E = {e1, . . . , em}, the algorithm is as follows:

1. Let S, S = ∅.

2. for i := 1 to m:

(a) Let Ri be chosen uniformly at random from {0, 1}.
(b) ifRi = 1 then put vi in S else put vi in S.

3. Output the cut (S, S).

We can derandomize this using the method of conditional expectations. Instead of maximizing the
expected number of good outputs at each branching point, we will maximize the expected size of the resulting
cut at each branching point i, where the expectation is over the random bits Ri+1, . . . , Rm which have yet
to be set.

We now treat S as a random variable, dependent on the random variables Ri. Let cut(S, S) (also a
random variable) denote the size of the (S, S) cut. Define

C(r1, . . . , ri) = E[cut(S, S)|R1 = r1, . . . , Ri = ri].

Note that

C(∅) = E[cut(S, S)] =
|E|
2
.

By the preceeding analysis, we if we can compute C(r1, . . . , ri) efficiently, we can give a deterministic
algorithm which finds a cut of size at least |E|/2.

Let us consider the state of the world after choice i is made. Let Si = {vj |j ≤ i, Rj = 1} and Si =
{vj |j ≤ i, Rj = 1} and Ui = {vi+1, . . . , vn}. Observe first that

C(r1, . . . , ri) = |cut(Si, Si)|+
1

2
|edges with at least one endpoint in Ui|.

The first term appears because edges already in the cut will not ever be removed, and the second because
edges since edges not already in the cut have a 1/2-chance of ending up in the cut.

In order to make a choice at branch point i, we need to compare C(r1, . . . , ri, 0) with C(r1, . . . , ri, 1). By
the above,

C(r1, . . . , ri+1) = |cut(Si+1, Si+1)|+ 1

2
|edges with at least one endpoint in Ui+1|.

However, the quantity |edges with at least one endpoint in Ui+1| does not depend on Ri+1—no matter what,
vi+1 is being removed from Ui+1. So in order to make a choice for ri+1, it suffices to maximize cut(Si+1, Si+1).
Slightly more formally,

cut(Si+1, Si+1) = cut(Si, Si) +

{
|edges from vi+1 to Si| if ri+1 = 0
|edges from vi+1 to Si| if ri+1 = 1

To maximize, simply pick the larger of the two possibilites in the right-hand term—this is the greedy
algorithm!

Corollary 1. The greedy algorithm for Max-Cut finds a cut of size at least |E|/2.

2-2

2 Randomized Min-Cut

Given an undirected multigraph G = (V,E), a Min-Cut of that graph is a partioning of the vertices into two
sets, S and S̄, with the least number of edges connecting the vertices of those sets of all possible cuts of G.
Equivalently, a Min-Cut is a minimal set of edges needed to disconnect G. There could be more than one
Min-Cut for a given graph.

There exist deterministic algorithms for finding the Min-Cut. A naive ways is find minc{c|c is an s−t cut}
with runtime Õ(n2m). The faster Hao-Orlin algorithm 1 can do it in Õ(nm).

Here we examine a particular idea for building a randomized Min-Cut algorithm, first using it naively
and then with some additional cleverness to get an algorithm with runtime Õ(n2) and probability of failure
of O1/nk).

(Note that the Õ notation indicates that constant and logarithmic factors are dropped from considera-
tion.)

2.1 A First Try

The algorithmic heart of the idea is this: given a graph G, in general the Min-Cut is a “small” set of edges in
G. Thus, an edge selected uniformly at random in G is unlikely to be in the Min-Cut, so if we decide to force
that edge out of the cut (by forcing its endpoint vertices to be on the same side of the cut) we are unlikely to
have made much of an error. Thus, we will simply contract edges (merging adjacent vertices) until only two
vertices remain, forming a graph G′ with two “supernodes”. Note that we allow for there to be more than
one edge between two vertices after a contraction operation. Once again, the key observation is that when
we contract an edge that does not belong to some chosen Min-Cut, the resulting post-contraction graph is
smaller, but has the same Min-Cut as G.

The last two remaining vertices represent a partitioning of G – all the vertices in S have been collapsed
and likewise for S̄. The remaining edges in G′ form a cut in G.

input : G a graph
while G has more than 2 vertices do

Choose an edge (u, v) uniformly at random;
G← G/(u, v);

end
output: unique cut defined by contracted graph

Algorithm 1: Random Min-Cut 1

1http://dl.acm.org/citation.cfm?id=139439

2-3

http://dl.acm.org/citation.cfm?id=139439

2.2 Analysis of the Simple Algorithm

As the size of the contracted graph decreases, it becomes ever more likely that we do err and contract away
an edge in the Min-Cut.

Lemma 2. A particular Min-Cut is returned by Algo 1 with prob ≥ 1/
(
n
2

)
.

Proof Consider a particular Min-Cut with c edges in it.

P (select an edge in this cut) =
c

m

. We claim this is ≤ 2
n . Since the size of the Min-Cut is c and the edges indicent to any particular vertex

form a cut, every vertex must have degree at least c. Hence, the graph has at least nc
2 edges.

When r vertices remain, there must be at least rc
2 edges left, again because the minimum degree of G is

c and contraction operations do not ever decrease degree. The probability of choosing a edge in our fixed
cut when r vertices remain, assuming that the cut has not already been contracted away, is thus at most

c
rc
2

=
2

r
.

So we get that

P (find Min-Cut) = P (never contract Min-Cut edge)

= P (don’t on 1st contraction) · P (don’t on 2nd|didn’t on 1st) · ··

≤
(

1− 2

n

)(
1− 2

n− 1

)
· · ·

(
1− 2

3

)
=

(
n− 2

n

)(
n− 3

n− 1

)(
n− 4

n− 2

)
· · ·

(
3

5

)(
2

4

)(
1

3

)
=

2

n(n− 1)
=

1(
n
2

) ≥ 1

n2

To boost the probability of finding a Min-Cut, we simply repeat the algorithm and return the smallest
cut found across many iterations. If we want inverse-polynomial probability of failure, then we repeat n2 lnn
times. Since each trial is independent of the others,

P (no iteration returns Min-Cut) ≤
(

1− 1

n2

)n2 lnn

From the most useful approximation ever (see appendix), we get that(
1− 1

n2

)n2 lnn

≤ e− lnn =
1

n

and the total running time is O(n4 lnn).
Unfortunately, this running time does not beat the deterministic algorithms referenced above, but this

bound already yields nice results (see Lecture 3 for some nice combinatorial corollaries).

2-4

2.3 Improving the Runtime

Is it possible to improve this algorithm to do better than the deterministic algorithms mentioned above?
Observe that the probability of failure is much higher in later iterations than at the beginning because

the ratio of “good” edges to “bad” is much higher. That is, we’re more likely to pick a Min-Cut edge as the
number of edges decreases. However, in the method given above, we repeat the low-chance-of-failure stages
just as much as the high-chance-of-failure ones. We would like to fix this, repeating the high-failure stages
more than the low-failure ones.

We will employ a recursive branching algorithm that chooses the best Min-Cut of two recursive calls on
a reduced graph. Because each contraction step chooses a random edge, the ith contraction step will be
repeated some number of times exponential in i, so most of the repetitions happen in lower levels of the call
graph where there are fewest vertices remaining in the graph. See Algo. 2

The question is how to decide how much to contract before branching and recursing. If we contract from
n to k vertices (which we will write n→ k), the probability we contract an edge in the Min-Cut is

P (bad contraction when n→ k) =

(
n− 2

n

)(
n− 3

n− 1

)
· · ·

(
k + 1

k + 3

)(
k

k + 2

)
≈ k2

n2

So if we choose k = n/
√

2 then P (no failure for n → k) ≤ 1/2. Branching after n → n/
√

2 will yield an
algorithm with easily-boostable success probability. Here’s the algorithm:

input : G a graph
input : n number of vertices in G
if G has 2 vertices then

return: weight of (unique) Min-Cut
end
else

G1 ← Contract G(n→ n√
2
) vertices ;

RecursiveContract(G1, n√
2
) ;

G2 ← Contract G(n→ n√
2
) vertices ;

RecursiveContract(G2, n√
2
) ;

return: max(G1, G2)
end

Algorithm 2: Recursive Contract

2.4 Analysis of the Improved Algorithm

What is the running time of Recursive Contract? What is its probability of success?

Running Time Recursive Contract’s running time clearly satisfies the recurrence

T (n) ≤ 2(n2 + T (n/
√

2)).

2-5

It follows easily from the master theorem that the runtime is therefore O(n2 log n) = Õ(n2). Thus the
branching has slowed down the algorithm slightly, but hopefully the error probability is such that we need
many fewer repitions to have an appropriate success rate.

Probability of Success Recursive Contract induces a perfect binary tree where internal nodes are branch-
ing points and leaves represent cuts of G which are attempts at min-cuts. Fix a particular min cut.

For an internal node n, define pn to be the probability that there is a leaf node corresponding to our
fiexed min cut in the subtree rooted at n, given that no edge of that min cut has been collapsed when the
algorithm reaches node n. By symmetry, if pn and pn′ are of the same depth then pn = pn′ , so define pd to
be pn for n of depth d.

By definition, p0 = 1 (where the 0-depth nodes are the leaves). By our above analysis, the probability
of contracting a good edge (i.e. one in our fixed min cut) in one contraction step is at most 1/2, so the
probability that one branch of a computation at level d succeeds is at least 1− 1

2pd−1. Hence, the probability
of success at at level d is given by

pd = 1− Pr[both children fail] = 1−
(

1− 1

2
pd−1

)2

.

Claim 3.

pd ≥
1

d+ 1
.

Proof The proof is by induction. In the base case, p0 = 1 ≥ 1/2. For the induction step, we can expand
our previous analysis of pd as follows:

pd = 1− Pr[both children fail] = 1−
(

1− 1

2
pd−1

)2

= 1− (1− pd−1 +
p2d−1

4
)

= pd−1 −
p2d−1

4
.

Then by induction this bounded from below by

1

d
− 1

4d2

which, because for all d ≥ 1 it is the case that (4d2)−1 ≤ (d(d+ 1))−1, is greater than

1

d
− 1

d(d+ 1)
=

1

d

(
d+ 1− 1

d+ 1

)
=

1

d+ 1

as desired.

It remains to find (an upper bound on) the total depth of the tree. At depth i in the tree, there are
n/(2i/2) nodes left in the graph. We will get an upper bound on the depth if we think of the algorithm as
running till there is just one node left—that is, we want 2d/2 = n. This occurs when d = 2 log n.

Thus, the probability of success is at least p2 logn = Ω(1/ log n). This is exponentially better than our
naive (non-branching) contraction algorithm, so boosting it is much easier.

Suppose we want to get failure probability ε. How many times to we have to run Recursive Contract?
That is, we need k such that (

1− 1

log n

)k

≤ ε.

2-6

By the most useful approximation ever, this occurs when

e−k/ logn ≤ ε

which (dropping a constant, since this will all go in to a big-O analysis) occurs when

k

log n
≥ log ε−1,

or, rewriting, when
k ≥ log ε−1 log n.

If we want inverse polynomial error, for example ε = 1/n, then we can take k = (log n)2. If we want error at
most n−c, we just get an additional multiplicative factor of c.

Thus, we have proved:

Theorem 4 (Karger, Karger/Stein). 2 There is a randomized Monte Carlo algorithm for min-cut that runs
in time Õ(n2). It fails to output a min cut with probability O(n−k).

What is a Monte Carlo algorithm? Read on:

Monte Carlo vs Las Vegas Algorithms This is bizarre terminology for the following notions. Random-
ness in an algorithm can affect both the runtime and the correctness. We distinguish between two kinds of
randomized algorithms: Monte Carlo algorithms have fixed (deterministic) runtime but a small probability
of failure, and Las Vegas algorithms always give the correct answer but have a random variable for their
running time.

Note that we can convert a Las Vegas algorithm which runs in time f(n) with high probability into a
Monte Carlo algorithm by stopping after f(n) time and guessing randomly if no answer has been output.
However, there is no (known) general way to convert a Monte Carlo algorithm to a Las Vegas one, the
issue being that there is no known way to check the correctness of the answer output by the Monte Carlo
algorithm.

3 Appendix: 1 − x ≤ e−x a.k.a. the Most Useful Approximation
Ever

We offer in this section a proof of

Theorem 5. For all x ∈ R, 1− x ≤ e−x.

Proof Note that since the second derivative of ex is just ex which is everywhere positive, ex is everywhere
convex. Thus, for any point x0 it lies above its linear approximation at x0. That is,

ex ≥ ex0 + ex0(x− x0).

With x0 = 0 this gives
ex ≥ 1 + (x− 0) = 1 + x.

A trivial inversion of sign yields
e−x ≥ 1− x

as desired.

Corollary 6. For all x, y ∈ R, (1− x)y ≤ e−xy.

2http://dl.acm.org/citation.cfm?id=234534

2-7

	Derandomizing via the Method of Conditional Expectation
	Derandomizing Max-Cut

	Randomized Min-Cut
	A First Try
	Analysis of the Simple Algorithm
	Improving the Runtime
	Analysis of the Improved Algorithm

	Appendix: 1 - x e-x a.k.a. the Most Useful Approximation Ever

