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1 Coupling

1.1 Definitions and Notation

Coupling is a useful tool in the analysis of the mixing time of Markov chains. The basic idea is that a Markov
chain that is initialized to some arbitrary distribution can be compared via coupling with another Markov
chain that is initialized to the stationary distribution. The two chains then progress simultaneously, and the
distance between the two chains at any time indicates how close the randomly initialized distribution is to
the stationary distribution.

The total variation distance between two distributions D1 and D2 on the same sample space Ω is defined
as

||D1 −D2||TV =
1

2

∑
x∈Ω

|D1(x)−D2(x)| = max
A⊂Ω
|D1(A)−D2(A)|.

One common definition of mixing time using this definition is

τ(ε) = min{t | ||P t − π||TV ≤ ε}.

We can then say a Markov chain is rapidly mixing if τ(ε) is polynomial in log(|Ω|) and log(1
ε ). This is

also related to the spectral gap of transition matrix P .
Coupling is a simple and elegant approach to bounding mixing times. Given a Markov chain on Ω, a

coupling is a Markov chain on Ω× Ω defining a stochastic process (Xt, Yt) such that:

1. each Xt and Yt in isolation is a faithful copy of the Markov chain

2. if Xt = Yt, then Xt+1 = Yt+1

Lemma 1 (Coupling Lemma). Let Zt = (Xt, Yt) be a coupling.
Suppose ∃T such that ∀x, y : Pr(XT 6= YT |X0 = x, Y0 = y) ≤ ε. Then τ(ε) ≤ T .
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Proof Consider a coupling with Y0 chosen according to π, with an arbitrary x0.

∀A ⊂ Ω : Pr(XT ∈ A) ≥ Pr(XT = YT ∧ YT ∈ A)

= 1− Pr(XT 6= YT ∨ YT /∈ A)

≥ 1− Pr(YT /∈ A)− Pr(XT 6= YT )

= Pr(YT ∈ A)− Pr(XT 6= YT )

= πA − ε

Similarly, Pr(XT /∈ A) ≥ πΩ\A − ε and Pr(XT ∈ A) ≤ πA + ε.

1.2 Examples

1.2.1 Random walk on hypercube

Imagine a random walk on a hypercube in Rn, with nodes at the vertices. There are therefore N = 2n nodes.
At each step, choose a random coordinate i, and a random bit b ∈ {0, 1}, and then change the ith bit to b.

Let’s define a random variable Xt ∈ Rn to be the coordinates of the random walk after t steps in the
random walk. Now imagine coupling this with another random variable Yt, which represents another random
walk which at each step uses the same i and b as Xt. If one walk starts at the stationary distribution, and
the other starts at some arbitrary position, how long will it take for the walks to meet?

1.2.2 Independent sets

Assume we have a graph G = (V,E), with the sample space Ω defined to be the set of all independent sets of
size k in G. The problem is to generate an independent set uniformly at random. We do so by constructing
a MCMC sampler, and we must prove that it mixes rapidly. Consider a random walk over Ω, represented
by random variable Xt which is the independent set at time t. The walk is defined by the following process:

• choose a vertex v ∈ Xt uniformly at random and a vertex w ∈ V uniformly at random

• if w /∈ Xt and Xt − v + w is independent, Xt+1 = Xt − v + w

• otherwise, Xt+1 = Xt

In other words, at each step, we pick a random vertex that is already in the set and swap it with a randomly
selected vertex in the graph if the result is also an independent set.

Claim 2. This Markov chain mixes rapidly if k ≤ n
3∆+3 , where n is the number of vertices and δ is the

maximum degree of the graph.

Proof For a random walk defined by Xt that is initialized arbitrarily, couple it with another random walk
defined by Yt that starts in the stationary distribution π. Then consider an arbitrary bijection f(v) : Xt → Yt,
i.e. a matching between vertices in Xt and Yt. This could, for example, be determined by a random
permutation of V at the beginning of execution. Then at each time step, pick w ∈ V uniformly at random
and v ∈ Xt uniformly at random, and update Xt as before. If v ∈ Yt, set Yt+1 = Yt − v + w if the result is
an independent set and Yt+1 = Yt otherwise. If v /∈ Yt, then use f(v) and set Yt+1 = Yt − f(v) + w if the
result is an indpendent set, and leave it unchanged otherwise.

Define the distance between the walks as dt = |Xt − Yt|, and note that it can change by at most 1 in
each step, but also that it can go up as well as down. The chains will have met when dt = 0. This process
is then similar to a random walk on a line, and if we can show that the corresponding walk of dt on the line
has negative drift, we can claim that this won’t take too long.

Let’s first analyze the probability of increasing the distance when the paths have not met yet. This can
only happen when v ∈ Xt and v ∈ Yt, which allows for one of the sets to swap the vertex v while the other
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does not. The probability that v ∈ Xt and v ∈ Yt is the probability that a random vertex v ∈ Xt is also in
Yt, which is k−dt

k . Even when this is the case, the distance will only increase if w is in the neighborhood of
either Xt or Yt (and therefore will swap with one but not the other) of if w is in Xt but not Yt or vice versa,

which has probability 2dt(∆+1)
n . Therefore

Pr(dt+1 = dt + 1 | dt > 0) ≤
(
k − dt
k

)(
2dt(∆ + 1)

n

)
.

For the distance to decrease, we again need two conditions. The first is that v /∈ Yt, which happens with
probability dt

k . Then, we need for w to be outside of the neighborhood of both Xt and Yt, and not in Xt or
Yt. Then both sets will swap a vertex that they do not share with w, which they do share, and decrease the

distance by one. The second condition has probability greater than or equal to 2dt(∆+1)
n . Therefore:

Pr(dt+1 = dt − 1 | dt > 0) ≥
(
dt
k

)(
2dt(∆ + 1)

n

)
.

Putting these two together forms our expectation:

E(dt+1 | dt) = Pr(dt+1 = dt + 1)(dt + 1) + Pr(dt+1 = dt − 1)(dt − 1)

≤ dt
(

1− n− (3k − 3)(∆ + 1)

kn

)
= dtα

where α is simply defined to be the entire term in the parenthesis. Noting that α < 1 for k ≤ n
3∆+3 means

that in this case
lim
t→∞

E(dt) ≤ lim
t→∞

d0α
t = 0

and
lim
t→∞

Pr(dt ≥ 1) ≤ lim
t→∞

E(dt) = 0.

2 Martingales

This section introduces martingales, a class of stochastic process capturing the idea of a fair game. Their
study originated from gambling theory and has many useful results.

2.1 Motivating Example: Coin-Flipping

One problem for which martingales are especially relevant is computing the expected number of flips of
a fair coin until a given sequence is observed. For instance, how many flips would it take on average to
observe HH or HTH? These values can be computed directly, but martingales provide a more elegant and
general solution. This section demonstrates the use of martingales in order to provide direction before we
give definitions.

Consider the sequence S = HTH. Let Ct denote the result of the flip at time t. Imagine that before
each flip, a new gambler arrives and bets $1 that Ct = H. If he loses, he his net loss is $1, and he stops
playing. If he wins, he bets his $2 winnings that Ct+1 = T , which would mean that the next element of S
is observed. Again, losing means his net loss is $1. If he wins, he bets his total winnings on observing H
next. In the next step, he either ends with a net loss of $1, or wins an $8 bet and ends with a net win of
$7. Remember, a new gambler is introduced at each t, creating a sequence of gamblers at different states in
their betting strategies.
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Let τ be the time at which S is first observed. Let Xt denote the net profit of all gamblers introduced
up to time t. After the more rigorous next section, we will be able to verify that Xt is a martingale. This
fact lets us apply the intuition1 that Xt is “fair”; i.e., E[Xτ ] = 0, meaning that a gambler can neither win
nor lose on average. When t = τ , exactly one person–the third most recent one—will have won his $8 bet;
another—the most recent one—will have just won his $2 bet because the last flip was H. Everyone else must
have lost a bet at some point because there are no other heads in S. In total, the gains are 8 + 2, and all τ
people paid 1. Therefore,

0 = E[Xτ ] = E[8 + 2− τ ] =⇒ E[τ ] = 10

2.2 Definitions and Notation

First we define a special case of martingales. A stochastic process {Xt} is a martingale if for all t,

E[Xt+1|X0, . . . , Xt] = Xt

An interpretation would be that given the history of the process, one can make no guess as to whether it
will increase or decrease.

We give a simple example. Consider a gambler with initial wealth X0 who repeatedly plays a fair game.
Then Xt, her wealth at time t, is a martingale because the expected winnings from each game are 0. This
says E[Xt+1|X0, . . . , Xt]−Xt = 0.

In general, {Xt} is a martingale2 with respect to another stochastic process {Yt}, whereXt = f(Y0, . . . , Yt)
for some function f , if

E[Xt+1|Y0, . . . , Yt] = Xt

When Xt is said to be a martingale, and there is no mention of Yt, then it is assumed that {Xt} = {Yt}.
We now make one change to notation. For a martingale defined with respect to {Yt}, instead of writing
Y0, . . . , Yt in the conditional probabilities, we write Ft.

Another relevant definition is stopping time. A random variable τ ∈ Z≥0 is a stopping time with respect
to {Yt} if for all t, we know whether the event {τ = t} occurs if we observe Y0, . . . , Yt.

2.3 Common Examples

2.3.1 Sums of i.i.d. Random Variables

Let Y0 = 0, and for all t ≥ 1 let Yt be distributed i.i.d. with E[Yt] = 0. For all t ≥ 0, define Xt =
∑t
k=1 Yk.

To check that {Xt} is a martingale with respect to {Yt}, we have

E[Xt+1|Ft] = E[Xt + Yt+1|Ft] = Xt + E[Yt+1|Ft] = Xt + E[Yt+1] = Xt

2.3.2 Variance of a Sum

Let {Yt} be defined as in the previous section. Let σ2 = E[Y 2
t ]. For all t ≥ 0, define Xt = (

∑t
k=1 Yk)2−nσ2.

To check that {Xt} is a martingale with respect to {Yt}, we have

E[Xt+1|Ft] = E[(Yt+1 +

t∑
k=1

Yk)2 − (n+ 1)σ2|Ft]

= E[Y 2
t+1 + 2Yt+1

t∑
k=1

Yk + (

t∑
k=1

Yk)2 − (n+ 1)σ2|Ft]

1This intuition will be formalized by the optional sampling theorem.
2A rigorous definition of martingale would involve σ-algebras and filtrations, which you are encouraged to learn.
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= Xt + E[Y 2
t+1] + 2E[Yt+1]

t∑
k=1

Yk − σ2

= Xt + σ2 + 0− σ2 = Xt

2.3.3 Doob Martingale

This example is useful yet tricky. Let {Yt} be an arbitrary sequence of random variables. Let X be a random
variable with |E[X]| < ∞. Let Xt = Et[X|Ft], where the subscript t denotes expectation over all Yk with
k > t. This process is called a Doob martingale or Levy martingale.

To check that {Xt} is a martingale with respect to {Yt}, recall the law of iterated expectation,

EXY [X] = EY [EX [X|Y ]]

which says that on the LHS the outer expectation over B averages out the condition on B. A consequence
is

EB [EA[f(A,B,C)|B,C]|C] = EAB [f(A,B,C)|C]

Therefore,
Et[Xt+1|Ft] = Et

[
Et+1[X|Ft+1]|Ft

]
= E
Yt+1,Yt+2,...

{
E

Yt+2,...

[
X|Yt+1, Ft

]
|Ft
}

= E
Yt+1

{
E

Yt+2,...

[
X|Yt+1, Ft

]
|Ft
}

= Et[X|Ft] = Xt

In the above, we first use the definition of Xt+1. Then we explicitly write out which variables the expectations
are over. Next we drop redundant variables from the outer expectation. Lastly we invoke the law of iterated
expectation.

An application would be to random graphs G(n, p) in which there are n vertices, and each possible edge
is present with probability p. Let the present edges be denoted by e1, . . . , em. Let X be some graph property,
such as chromatic number. Let Yt be the indicator of the presence of et, so that Ft means we have observed
whether e1, . . . , et are present. Then Xt is the expected chromatic number after observing whether the first t
edges are present. Now Xt is called an edge exposure martingale. We also see that X0 = E[X] and Xm = X.
These facts can be combined to lead to interesting results.

2.4 Martingale Facts

Fact 3. For all t, E[Xt] = E[X0], where E[·] is expectation with respect to all Yk.

Proof Let Et[·] denote expectation with respect to Yk for all k > t. We induct on t:

Et[Xt+1|Ft] = Xt

=⇒ E[Xt+1] = E[Et[Xt+1|Ft]] = E[Xt] = E[X0]

where we use the law of iterated expectation.

Fact 4. Optional Sampling Theorem (a.k.a. Optional Stopping Theorem). Let {Xt} be a martingale w.r.t.
{Yt}. Let τ be a stopping time. Then E[Xτ ] = E[X0], where the expectation is over all Yk, if at least one of
the following holds almost surely (with probability 1):

• |Xt| <∞ ∀t
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• |τ | <∞

• E[τ ] <∞, E[|Xt+1 −Xt|
∣∣Ft] <∞

Remark The proof of the OST is beyond the scope of this class. However, the result is highly intuitive
and is basically a stronger version of martingales being “fair” no matter what strategy is played.

2.5 Applications of Optional Sampling Theorem: Symmetric Random Walk

Consider the symmetric random walk {Xt} on the line. Given a, b > 0, let τa = min{t : Xt = −a} be the
first time at which −a is hit. Let τb = min{t : Xt = b} be the first time at which b is hit. We will compute
pa = Pr(τa < τb).

First, we formally define Xt. Let Yt equal 1 or -1 with equal probability. Now the random walk Xt =∑t
k=1 Yk is a martingale. Let τ = min(τa, τb).
In this class, we must take on faith that τ <∞ almost surely.3 By the OST,

0 = E[X0] = E[Xτ ] = pa(−a) + (1− pa)b =⇒ pa =
b

a+ b

Next, we will compute E[τ ]. Let Zt = X2
t − n. Then Zt is a martingale because

E[Zt+1 − Zt|Ft] = E[X2
n+1 − 1 + Zn − Zn|Ft] = E[X2

n+1 − 1] = 0

By the OST,
0 = E[Z0] = E[Zτ ] = (paa

2 + (1− p)b2)− E[τ ] =⇒ E[τ ] = ab

3The reason is that Xt is a recurrent and irreducible Markov chain.
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