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1 Introduction

For all ε, δ > 0, we say that a randomized algorithm gives an (ε, δ) approximation for a value V if the output
X of the algorithm satisfies

Pr(|X − V | > ε|V |) < δ.

Here we will discuss Monte Carlo methods, which are a collection of tools for obtaining such approxi-
mations through sampling and estimation. A typical Monte Carlo method runs as follows: we sample i.i.d.
random variables X1, . . . , Xm whose mean µ = E(Xi) is the quantity that we desire. If m ≥ 3 log(2/δ)/(ε2µ)
then by Chernoff bounds,

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ εµ
)
≤ δ.

Notice, however that if µ is small then m might have to be very large–hence when constructing Monte Carlo
algorithms we should try to make µ as large as possible. We illustrate with an example.

2 DNF Counting

Given a DNF formula ϕ with n variables, DNF counting is the problem finding the number of satisfying
assignments for ϕ. Note that in general satisfiability for DNF is easy as we need only satisfy a single clause,
but the counting problem is hard. Indeed, if we could do this, then given any 3-CNF formula f with n
variables, we could take its negation, count how many satisfying assignments its negation has, and if that
was equal to 2n then ¬f is a tautology so f is unsatisfiable, otherwise, it is satisfiable, so we have solved
3-SAT. The counting problem is hard for a class called #P , which is a very strong form of intractability. We
seek to find approximate solutions to this problem.

The obvious approach is the following: sample random assignments uniformly at random, and take the
estimate to be p2n where p was the fraction of assignments that satisfied ϕ. Let Xi be the random variable
which is 1 if the ith assignment we chose satisfied F , zero otherwise, and suppose we sample m times. Then
p = 1

m

∑m
i=1Xi. Let µ be true fraction of satisfying assignments. Then for fixed ε, δ > 0 if we want

Pr(|X − µ| ≥ εµ) ≤ δ

then using only Chernoff bounds as above would require m = Ω(1/µ). However, in general, µ can be
exponentially small: for instance, if there is only one satisfying assignment then µ = 2−n, so the obvious
approach may take exponential time to get nice probabilistic guarantees.

Instead, we will do the following. Write

φ = C1 ∨ C2 ∨ . . . Ct

and let SCi be the set of assignments that satisfy clause i. We wish to approximate S = | ∪i SCi|. We do
so as follows: let

U = {(i, x) : 1 ≤ i ≤ t, x ∈ SCi}.
It is easy to count |SCi|, as if Ci contains i variables then |SCi| = 2n−i. As |U | =

∑t
i=1 |SCi|, it is easy to

count |U |, so to approximate S we need only to find out approximately how much we repeat ourselves in U .
More rigorously, let

X = {(i, x) : 1 ≤ i ≤ t, x ∈ SCi, x 6∈ SCj , j ≤ i− 1}.
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Then clearly |X| = S, and we will estimate |X| be approximating |X|/|U |. To do this, we will sample
elements (i, x) from U uniformly at random and determine if (i, x) ∈ X. Given a random sample (i, x) ∈ U ,
it is not hard to check if (i, x) ∈ X: simply check whether or not x satisfies Cj for some j < i, which take
polynomial time. Importantly, we claim that |X|/|U | ≥ 1/t, as trivially, every satisfying assignment must
satisfy some clause, so when we do the same Chernoff bound analysis as before, to get an (ε, δ) approximation
it will suffice to take 3t log(2/δ)/ε2 samples, so assuming we can sample from U , this whole procedure will
take polynomial time.

Thus it suffices to pick samples uniformly at random from U . To do so, for each 1 ≤ i ≤ t we pick i with

probability |SCi|
|U | , then we randomly pick an element x of |SCi|. The latter is easy to do because it amounts

to flipping n− j coins, where j is the number of variables present in Ci. Then

Pr((i, x) is selected) =
|SCi|
U

1

|SCi|
=

1

U

so we have found a way to sample uniformly form U , so we are done.

3 Independent Sets

Suppose we have a graph G = (V,E). Order its edges arbitrarily, and label them E = {e1, . . . , em}.
Define a sequence of graphs Gi = (V,Ei) where Ei = {ej |j ≤ i}.
Notice that G0 = (V, φ) and Gm = G.
Next, define Ω(Gi) to be the set of Independent Sets in Gi.

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)|

× |Ω(Gm−1)|
|Ω(Gm−2)|

× . . .× |Ω(G1)|
|Ω(G0)|

× |Ω(G0)|

To estimate |Ω(G)|, we just need to have a good estimate for

ri =
|Ω(Gi)|
|Ω(Gi−1)|

Lemma 1. For all i, ri ≥ 3
4 .

Proof Write ei = (u, v). Then the only way we lost an I.S. I from Gi−1 to Gi is if both u aand v are in
I. However, if I ∈ Ω(Gi−1), then so are I \ {u}, I \ {v}, and I \ {u, v}. All three of these are also members
of Ω(Gi), so for any I.S. lost, there are at least three others that remain, and so ri ≥ 3

4 .

Now we present an algorithm for estimating ri, given that we have an algorithm for generating random
samples (which will be presented later):

1. X = 0

2. Repeat M times: (for M = 3m2

ε2 ln( 2m
δ ))

• generate uniform sample from Ω(Gi−1)

• if sample is an independent set in Gi, increment X.

3. return r̃i = X
M .

By the Chernoff bound discussed previously, since ri is large, r̃i is a ( ε
2m ,

δ
m ) approximation of ri.

Our estimate of |Ω(G)| is equal to

2n
m∏
i=1

r̃i

25-2



while the true value is

2n
m∏
i=1

ri.

We claim the two are close, with high probability.

Claim 2.

Pr

(
|
m∏
i=1

r̃i
ri
− 1| ≤ ε

)
≥ 1− δ

Proof For each individual i, we have

Pr
(
|r̃i − ri| ≤

ε

2m
ri

)
≥ 1− δ

m

or equivalently,

Pr
(
ri(1−

ε

2m
) ≤ r̃i ≤ ri(1 +

ε

2m
)
)
≥ 1− δ

m
or

Pr

(
1− ε

2m
≤ r̃i
ri
≤ 1 +

ε

2m

)
≥ 1− δ

m

so by the union bound,

Pr

(
1− ε ≤ (1− ε

2m
)m ≤

m∏
i=1

r̃i
ri
≤ (1 +

ε

2m
)m ≤ 1 + ε

)
≥ 1− δ

and we are done.

To estimate |Ω(G)|, all that remains is to figure out how to generate a uniform sample from Ω(Gi−1)∀i.
Additionally, an almost uniform sample suffices – the extra error can be carried through the previous ε/δ
proof.

3.1 Sampling

The current goal is to sample elements from a universe Ω according to some distribution π.
One cool way to do so is to design a Markov chain whose state space is Ω that has stationary distribution
π. Then, we can simulate this Markov chain until it ”mixes”, and use the state at that time as a sample.
Notice that in the Independent Set case, the Markov chain has |Ω| states, which is exponential in |G|, so we
need a chain with a logarithmic mixing time (e.g. an expander graph).

The two key questions related to this are:

1. How do we design a chain with the right distribution?

2. How do we bound the mixing time?

In the case of Independent Sets, construct the Markov chain as follows:
The states are the independent sets of G, and Xt is some independent set.
To transition, choose a vertex v uniformly at random from V :

• if v ∈ Xt then Xt+1 = Xt \ v

• if v /∈ Xt and Xt ∪ v is an independent set of G, then Xt+1 = Xt ∪ v

• otherwise, Xt+1 = Xt
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A few things to observe: First, the graph is irreducible, since to get from I to I ′, it is possible to first
remove every vertex in I and then to add in each vertex in I ′. If there exists an edge, then it is aperiodic,
as it is possible to stay in the same state. Finally, the chain is doubly stochastic, which implies that the
stationary distribution is uniform over all independent sets.

Let us now check that P is doubly stochastic. First, notice that the transition from Xt to Xt+1 is
deterministic once we have chosen v. Then, notice that if we have transitioned to state Xt+1 by choosing
vertex v, there is exactly one state Xt that we could have come from: if v ∈ Xt+1, then it must have been
added to Xt+1 \ v. If v /∈ Xt+1 and it could safely have been added, it must have just been removed from
Xt+1 ∪ v. If it’s not in Xt+1 and adding it would break the constraints, then it was a self loop from Xt+1.
So if Xt+1 = j, then for each of the n vertices there was a 1

n contribution to some Pij and no contribution
to any of the others. So

∑
i Pij = 1.

Let’s consider a general technique to find such a chain. Given a state space Ω and a connected graph on
Ω, we need to define transition probabilities so that we will have a stationary distribution matching a target
π.

3.2 Metropolis Algorithm

As input, we take a state space Ω, a connected graph G = (Ω, E), and a π such that
∑
i∈Ω πi = 1.

Let ∆ be the maximum degree in the graph.

Pxy =


1

2∆ min(1,
πy

πx
) x 6= y, y ∈ N(x)

0 x 6= y, y /∈ N(x)

1−
∑
y 6=x Pxy x = y

One nice property is that defining P only depends on the ratios of

π, not on πx or πy in isolation. In some circumstances, π is only known up to proportionality, and it’s not
easy to get the normalizing factor, but that does not affect this algorithm.

Claim 3. For all x, y, πxPxy = πyPyx.

Proof If x 6= y, assume without loss of generality that πx ≤ πy. Then πx( 1
2∆ ) = πy( 1

2∆
πx

πy
). by explicit

calculation.

This claim implies that π is a stationary distribution for our Markov chain.

As an example, suppose we wanted to sample the independent sets according to the distribution π(I) =
λ|I|

Z , where Z =
∑
I′ λ
|I′|.

Then by the algorithm above, the probability matrix is defined as

PI,I′ =
1

2n
min(1, λ).

We now wish to show that the metropolis algorithm can be run in polynomial time; that is, we only need to
run the simulation for polynomially many steps before we get ε-close to the stationary distribution. We do
so in the next lecture, using the techniques we develop below.

4 Mixing Times and Couplings

4.1 Motivation

We have seen before that there are many important properties of Markov chains that relate to how fast a
starting distribution converges to the stationary distribution, including the spectral gap and various conduc-
tance properties. Analysis of these invariants often produced upper bounds on how fast the Markov chain
could mix, and vice versa. Often times (like in the Metropolis algorithm), the reason why we are interested
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in a Markov chain is because we to approximate the stationary distribution, and so the technique is to simply
start the Markov chain somewhere, and let it run for a while. While we know that eventually the distribution
will converge to the stationary distribution, we would like some way to know concretely how many steps are
needed. In particular, we hope that only polynomially many steps are needed.

As an aside, apparently there are important connections to the hardcore lattice gas model in statistical
physics, whatever that means.

4.2 Total Variation and Mixing Times

We introduce here a technique to bound the mixing time of finite, aperiodic, irreducible Markov chains.
Intuitively, the mixing time of a Markov chain is how long it takes for the Markov chain to approach the
unique stationary distribution.

Definition 4. Let D1, D2 be two probability distributions over some finite sample space Ω. Then the total
variation of D1 and D2 is

‖D1 −D2‖TV =
1

2

∑
x∈Ω

|D1(x)−D2(x)|.

The total variation of two distributions is a measure of how far they differ in the worst case. This is
made rigorous in the lemma below.

Lemma 5. For all D1, D2,
‖D1 −D2‖TV = max

A⊂Ω
|D1(A)−D2(A)|.

Proof Let A1 = {x ∈ Ω : D1(x) ≥ D2(x)} and A2 = Ac1. Then

‖D1 −D2‖TV =
1

2
(D1(A1)−D2(A1) +D2(A2)−D1(A2))

=
1

2
[D1(A1)−D2(A1) + 1−D2(A1)− (1−D1(A1))]

= D1(A1)−D2(A1).

Similarly
‖D1 −D2‖TV = D2(A2)−D1(A2)

so
‖D1 −D2‖TV ≤ max

A⊂Ω
|D1(A)−D2(A)|.

For the other direction, for any A ⊂ Ω, if D1(A)−D2(A) ≥ 0 notice that D1(A)−D2(A) ≤ D1(A1)−D2(A2)
and otherwise D2(A)−D1(A) ≤ D2(A2)−D1(A2), so the maximum of |D1(A)−D2(A)| is obtained at these
two sets, so

‖D1 −D2‖TV ≥ max
A⊂Ω
|D1(A)−D2(A)|

and we are done.

Definition 6. For any Markov chain over states Ω with stationary distribution π, and for any initial
distribution P and ε > 0, the mixing time is

τP (ε) = min{t : ‖P s, π‖TV ≤ ε, s ≥ t}

where P t is the distribution after t steps of the Markov chain.

That is, the mixing time is the first time such that the actual distribution becomes ε-close to the stationary,
in the total variation sense. We say that the Markov chain is rapidly mixing if τ(ε) is asymptotically
polynomial in log |Ω| and log(ε−1).
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4.3 Coupling

Coupling is a simple and elegant technique that sees a variety of application in probability. Here we will use
it to bound mixing times.

Definition 7. Given a Markov chain on Ω, a coupling is a Markov chain on Ω × Ω defining a stochastic
process (Xt, Yt) so that

1. Xt and Yt alone are faithful copies of the original Markov chain; that is, there are initial conditions
X ′0 and Y ′0 on the original Markov chain defining stochastic processes X ′t and Y ′t so that

Pr((Xt, Yt) ∈ A× Ω) = Pr(X ′t ∈ A)

and
Pr((Xt, Yt) ∈ Ω×A) = Pr(Y ′t ∈ A)

for all A ⊂ Ω.

2. If Xt = Yt then Xt+1 = Yt+1 pointwise.

Intuitively, a coupling is when two walks in the Marko chain walk together, in some sense.
Example. Consider the random walk on the hypercube Fn2 . At each step, we choose a random coordinate

i and a random bit b ∈ {0, 1} and we change the ith bit to b. Given two starting positions x, y we may
construct a coupled walk; that is, consider the Markov chain over Fn2 × Fn2 where given two states (a, b),
we transition by choosing a random coordinate and a random bit as above, then altering both a and b in
the way described above, so that the two walks transition together. If we take the starting position of this
new Markov chain to be (x, y) then the resulting stochastic process (Xt, YT ) is clearly a coupling: as each
marginal transitions according to the original Markov chain, alone both Xt and Yt must be walks along the
original Markov chain, and clearly since we transition together if Xt = Yt then Xt+1 = Yt+1. We will use
this coupling, along with the lemma we present next, to bound the time it takes for two random walks on
the hypercube to meet.

Lemma 8 (Coupling Lemma). Let Zt = (Xt, Yt) be a coupling where Y0 = π and X0 = X, where X is some
arbitrary distribution. Suppose there exists a T so that,

Pr(XT 6= YT |X0 = X) ≤ ε.

Then the mixing time starting at X is bounded by T , that is, τX(ε).

Proof Suppose X started at some arbitrary X0. For all A ⊆ Ω,

Pr(XT ∈ A) = Pr(XT = YT ∩ YT ∈ A) + Pr(Xt 6= YT ∩XT ∈ A)

≥ Pr(XT = YT ∩ YT ∈ A)

= 1− Pr(Xt 6= YT ∪ YT 6∈ A)

≥ 1− Pr(YT 6∈ A)− Pr(Xt 6= YT ) ≥ π(A)− ε

where the fourth inequality follows from the law of total expectation. Similarly, Pr(Xt 6∈ A) = Pr(XT ∈
Ac) ≥ π(Ac)− ε so Pr(XT ∈ A) ≤ π(A) + ε and so we are done.

Examples to follow next lecture.
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