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1 Random walks and Markov chains

This lecture discusses Markov chains, which capture and formalize the idea of a memoryless random walk
on a finite number of states, and which have wide applicability as a statistical model of many phenomena.
Markov chains are postulated to have a set of possible states, and to transition randomly from one state
to a next state, where the probability of transitioning to a particular next state depends only on, and is
determined fully by, the state that it is currently in. This last property of being memoryless and having the
next state’s probabilities determined only by the current state is called the “Markov property”.

1.1 Random-walk-based algorithm

Consider 2-SAT, the problem of determining whether or not a boolean formula in conjunctive normal form,
when there are at most two literals per clause, has a satisfying assignment.

The following algorithm is based on a random walk. First start with an arbitrary assignment to the n
variables, and then, up to 100n2 times, if the formula is not satisfied, choose a random unsatisfied clause
and a random variable from that clause, and flip the value of that variable. If at any point during the
100n2 iterations of this, if the formula is satisfied, then return that satisfying assignment. Else return
”unsatisfiable”.

In order to analyze this algorithm, we’ll consider how likely it is to stumble upon a particular satisfying
assignment S during 100n2 iterations. For each iteration t, consider Xt, the number of variables that agree
with S immediately before the tth iteration of the algorithm. The algorithm can then be projected to a
random walk on Xt: each time a variable is flipped, it either increases or decreases Xt by one. The algorithm
succeeds if Xt ever reaches n.

Since the flipped variable at each step is one of two variables in an unsatisfied clause, and since every
clause is satisfied in S, there is at least an one-half chance that the flipped variable started out disagreeing
with S and flipped into a state that agreed with S. We express this as:

Pr[Xt+1 = i+ 1 | Xt = i] ≥ 1

2
.

Consider the pessimal version of this where Pr[Xt+1 = i + 1 | Xt = 1] is exactly one half at every step
(unless Xt = 0). This gives the process the property of being memoryless... the transitions at each step are
independent of the history of previous states, so this pessimal version is a Markov chain. Also assume that
X0 = 0. We will show that in this case, E[min t | Xt = n] = n2.

This implies that, if the formula is satisfiable, the expected number of iterations it’ll take for the algorithm
to succeed is at most n2, so by doing 100n2 iterations, we obtain a 2−100 chance at most of this algorithm
reporting a false negative.

To show that E[min t | Xt = n] = n2, let hj be the expected number of steps to reach n on our random
walk when we start at j. We get a straightforward recurrence by expanding hj in terms of the number of
steps to reach n one step after we leave j:

hj = 1 + 1
2hj−1 + 1

2hj+1 =⇒ hj − hj+1 = hj−1 − hj + 2.

Using the base case that h0 − h1 = 1, a simple induction yields hj − hj+1 = 2j + 1. Then, using hn = 0,
another simple induction gives us:

h0 = hn +

n−1∑
j=0

hj − hj+1 =

n−1∑
j=0

2j + 1 = n+ 2

(
n(n− 1)

2

)
= n2.
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1.2 Finite Markov chains

A finite Markov chain is a random walk on a directed graph. The directed graph has its edges labeled with
transition probabilities, in a way so that the law of total probability holds (ie for each vertex, the sums of
its outgoing edge labels is exactly 1). Each vertex in this graph is called a state of the Markov chain.

A Markov chain can equivalently be described as a transition matrix P , where Pij is the probability of
transitioning to state j if the preceding state is i. Thus if Xt denotes the state of the Markov chain at time
t, we write Pr[Xt+1 = j | Xt = i] = Pij . The property that P satisfies the law of total probability means
that it is a stochastic matrix.
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Figure 1: Markov chain, depicted in graph
form.
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Figure 2: Same Markov chain as a transi-
tion matrix.

Let p(t) denote the probability distribution for the state of the Markov chain at time t, so that p
(t)
i =

Pr[Xt = i]. Then p(0) gives the initial probability distribution for the Markov chain is in, so that p(0) =
(1, 0, . . . , 0) means to start in state 1, and p(0) = ( 1

n , . . . ,
1
n ) means to start in a uniformly random state.

The matrix formulation of a Markov chain gives us the following equivalences:

p(t+1) = p(t)P, and p(t+m) = p(t)Pm.

Definition 1. An irreducible Markov chain is one whose corresponding graph is strongly connected. The
period of a state i in a Markov chain is the greatest common divisor of all n ≥ 1 such that (Pn)ii > 0. A
Markov chain is aperiodic if the period of every state is 1.

For example, a bipartite Markov chain is never aperiodic, and given any Markov chain P , we can construct
an aperiodic one by taking P ′ = 1

2 (I + P ).
All the Markov chains we’ll consider will be finite, irreducible, and aperiodic. This implies that there is

some N > 0 such that for all n ≥ N , the entries of the matrix Pn will be strictly positive (i.e. nonzero).

1.3 Stationary distributions

Definition 2. A probability distribution π is a stationary distribution of a Markov chain with transition
matrix P if π = πP .

Consequently, for all states j, πj =
∑
i πiPij.

A stationary distribution of P can be thought of as a fixed point, or an eigenvector of eigenvalue 1. The
matrix P may have eigenvalues not equal to 1, but since the law of total probability must be satisfied, the
corresponding eigenvectors will not be probability distributions (they must have negative components).

The following technical definitions and lemma will be needed to prove the Fundamental Theorem of
Markov Chains later on:

Definition 3. The hitting time Tij is equal to mint≥1{Xt = j | X0 = i}. That is, it is a random variable
tracking the number of steps it takes to get to j from i.

Let hij = E[Tij ]. Then hii is the expected time of first return to state i after starting from state i.

Lemma 1. For all states x and y in an irreducible Markov chain, hxy <∞.
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Proof There are r ∈ N and ε > 0 such that for all states z and w and for some j ≤ r, it holds that
(P j)zw > ε. This is true since we can guarantee a nonzero uniform lower bound for all nonzero entries in
{(P j)zw} just because there are a finite number of such entries, and we can guarantee that there exists a
nonzero (P j)zw for each pair of states z, w by taking a high enough r, because of irreducibility.

So consider a random walk on the Markov chain starting at x. Within the first r steps, there is at least
a ε chance of the walk having reached y. Suppose it doesn’t: then the walk is at some state x2 6= y after the
rth step. There is then at least a ε chance of reaching y in r more steps starting from x2. Continuing on in
this fashion, the expected value of Txy is at least:

hxy ≥ r + (1− ε)r + (1− ε)2r + . . . = r

∞∑
k=0

(1− ε)k =
r

ε
.

Theorem 1 (Fundamental Theorem of Markov Chains). For any finite, irreducible, aperiodic Markov chain:

1. There exists some stationary distribution π, and πx > 0 for all states x.

2. π is unique.

3. πi = 1/hii.

4. For all states i, j, limt→∞(P t)ij = πj.

Proof of (1). For a random state z, define π̃y to be the expected number of times the random walk visits
state y before returning to z. Then:

π̃y =

∞∑
t=1

Pr
z

[Xt = y ∧ (∀u < t)Xu 6= z] ≤
∞∑
t=1

Pr
z

[(∀u < t)Xu 6= z] = hzz < ∞.

We claim that π̃ is a fixed point of P . We verify this by calculating the yth component of π̃P , first by
expanding the definition of π̃x, then by substituting

∑
x Prz[Xt = x]Pxy = Prz[Xt+1 = y]:

(π̃P )y =
∑
x

π̃xPxy

=
∑
x

(∑
t

Pr
z

[Xt = x ∧ Tzz > t]
)
Pxy

=
∑
t

(∑
x

Pr
z

[Xt = x ∧ Tzz > t]Pxy

)
=

∞∑
t=0

Pr
z

[Xt+1 = y ∧ Tzz ≥ t+ 1]

=

∞∑
t=1

Pr
z

[Xt = y ∧ Tzz ≥ t]

= π̃y − Pr
z

[X0 = y ∧ Tzz > 0] +

∞∑
t=1

Pr
z

[Xt = y ∧ Tzz = t]

= π̃y − Pr
z

[X0 = y] + Pr
z

[XTzz = y]

= π̃y,

where the last equality is because we set X0 = z, and so XTzz
= z since Tzz is the time it takes to get back

to z.
So we concluded that π̃P = π̃, so all we have to do to get our stationary distribution is to normalize π̃:

πx =
π̃x∑
y π̃y

=
π̃x
hzz

.
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Proof of (2). Suppose π and π̃ are two stationary distributions of P and we’ll show that π = π̃. Let
x = argminy πy/π̃y, and let c = πx/π̃x. Then:

c =
πx
π̃x

=

∑
y πyPyx∑
y π̃yPyx

≥
∑
y cπ̃yPyx∑
y π̃yPyx

= c.

We substituted using πy ≥ cπ̃y and found that that inequality is actually an equality. Therefore, since π
and π̃ are both normalized and π = cπ̃, we must have c = 1 and π = π̃.

Proof of (3). Remember from our construction of the stationary state π that:

πx =
π̃x∑
y π̃y

=
π̃x
hzz

.

By uniqueness, we could have set z = x and have come up with the same value for πx. So then:

πx =
π̃x
hzz

=
Ex[# of visits to x before returning to x]

hxx
=

1

hxx
.

Proof of (4). Because P is irreducible, there exists an r such that all the entries of P r are greater than
zero. Thus, for some sufficiently small δ > 0, (P r)xy ≥ δπy for all states x, y.

Let Π the the matrix formed by using π as each of its rows, so that:

Π =


←− π −→
←− π −→

...
←− π −→

 .

Then we can define a stochastic matrix Q by setting:

P r = δΠ + (1− δ)Q,

where Q must be stochastic because it is a weighted average of stochastic matrices with nonnegative entries.
Now, two properties of any stochastic matrix M are that MΠ = Π, and if πM = π then ΠM = Π.

To show that limt→∞(P t)xy = πy for all x, y, we will show that:

P rk = (1− (1− δ)k)Π + (1− δ)kQk.

This proceeds by induction on k. Since we can write P rk − Π = (1 − δ)k(Qk − Π), and ΠP = Π, we can
multiply both sides by P r and get:

P rk+r −Π = (1− δ)k(QkP r −Π)

= (1− δ)k(Qk(δΠ + (1− δ)Q)−Π)

= (1− δ)k(δQkΠ + (1− δ)Qk+1 −Π)

= (1− δ)k((1− δ)Qk+1 − (1− δ)Π),

= (1− δ)k+1(Qk+1 −Π),

so that:
P r(k+1) = (1− (1− δ)k+1)Π + (1− δ)k+1Qk+1.
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2 Maximum Matching in Regular Bipartite Graphs

Hall’s marriage theorem guarantees that regular bipartite graphs (bipartite graphs where all vertices have
the same degree) always have a perfect matching. In this section, we will give an algorithm for finding a
perfect matching for a regular bipartite graph G with n nodes and m edges in O(n log n) expected time.

A partial matching of G is a set of edges with no shared nodes. Given a partial matching, an augmenting
path for that matching is a path which starts and ends at two separate unmatched nodes and alternates
between edges in the match and edges outside of it.

Theorem 2. A matching M is maximal if and only if there is no augmenting path for M .

Proof If there is an augmenting path to M , then we can use it to construct a bigger matching. Each
node in M ’s path except for the ends was an endpoint of an edge in the matching, and the ends of the path
were two different unmatched nodes, so each node is visited exactly once. Therefore, since the matched and
unmatched edges in the augmenting path alternate, the unmatched edges form a matching. Since the path
started and ended with unmatched edges, there is one more edge in this new matching than the original
matching, making it larger than M and meaning M is not maximal. Therefore, M is maximal only if there
is no augmenting path.

Next, we want to show that if there is no augmenting path for M , then M is maximal. Assume for
contrapositive that M is not maximal. Then there exists some larger matching M ′ such that |M ′| > |M |.
Since M ′ contains at least one more edge than M , there are at least two more matched vertices in M ′ than in
M . Start at some vertex matched in M ′ but not in M , and follow edges matched in one of them (which must
alternate, since each vertex is matched to at most one other vertex in each matching) until either reaching
a vertex matched in M ′ but not in M , or vice versa. If the vertex is matched in M ′ but not M , then this is
an augmenting path for M . If the vertex is matched in M but not M ′, then this path had the same number
of vertices matched in M as in M ′. Since we know M ′ has more vertices matched than M , we will always
eventually find an augmenting path for M .

The traditional approach to finding a perfect matching for G is the augmenting path algorithm: Repeat-
edly find an augmenting path alternating between matched and unmatched edges until no augmenting path
can be found. This algorithm runs in O(m) steps. We will use a randomized algorithm to improve on this
time, running in expected time O(n log n).

We will still use the augmenting path strategy, but instead of performing breadth first search to find an
augmenting path, we will use a random walk. On each iteration of the algorithm, we start with a partial
matching M . Our graph is bipartite, so let L be one of the independent sets of nodes and R be the other. We
will refer to L as being on the left, and R as being on the right. Construct a directed graph G′ corresponding
to our original graph G by having all edges in M go from R to L, and all other edges go from L to R. Add
two vertices s and t such that there is an edge from s to each unmatched vertex in L for each edge out of
it, and an edge from each unmatched vertex in R for each edge into it to t. Add edges from t to s equal to
the number of edges out of s (which is equal to the number of edges into t). Contract each edge in M to a
single vertex with the edges of both endpoints. By this construction, and because G is regular, each vertex
in G′ will have the same in-degree as out-degree, so G′ is Eulerian.

G has an augmenting path if and only if there is a path from an unmatched vertex in L to an unmatched
vertex in R in G′, or equivalently by our construction, G′ has a cycle from s to s.

Our algorithm will be to do a random walk starting from s. The expected time to find an augmenting
path is the expected travel time from s to s, E(Ts,s) = hs,s. As we showed earlier, hs,s = 1

πs
.

Claim 3. In a Eulerian directed graph, the stationary distribution is

πv =
dout(v)

m

where dout is the out degree of vertex v (which is equal to its in degree) and m is the total number of
edges in the graph.

Proof
In the stationary distribution, πv is the sum of in flow to v from all vertices:
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πv =
∑

u|(u,v)∈E

πupuv =
∑

u|(u,v)∈E

dout(u)

m

1

dout(u)
=
dout(v)

m
=
din(v)

m

Therefore, hs,s = m
dout(s) .

In each iteration of the random walk, we add an edge to our matching. In iteration i, there are i edges
in the matching, meaning that dout(s) ≥ (n − i)d, where d is the degree of G. Then hs,s ≤ dn

d(n−i) = n
n−i .

Since we must find a cycle in each of the n iterations, the total running time of the algorithm is at most:

n−1∑
i=0

n

n− i
= O(n log n)

The algorithm runs in O(n log n) time as desired.
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