
CSE525: Randomized Algorithms and Probabilistic Analysis

Lecture 11
Lecturer: Anna Karlin Scribe: Cyrus Rashtchian, Tyler Rigsby

Lovász Local Lemma

The Lovász Local Lemma is a clever technique to lower bound the probability that no events in some set
occur. In particular, it shows that under certain conditions (weaker than independence), there is a positive
probability that a set of “bad” events all do not occur. Usually, the only way to bound such a probability is
to hope that either (i) the sum of the probabilities of the bad events is less than one (i.e. the union bound),
or (ii) that all the events are independent and at least one has probability less than one. The Lovász Local
Lemma is a clever combination of these cases.

Let’s start with two relevant definitions about the dependency and mutual independence of events.

• An event A is mutually independent of events B1, B2, . . . , Bk if for any subset I ⊆ [1, . . . , k], we have
that Pr(A |

⋂
j∈I Bj) = Pr(A) (that is, the occurrence of any subset of events that A is mutually

independent with does not affect the probability of A).

• A dependency graph for events E1, E2, . . . , En is an undirected graph G = (V,E) where V = {1, . . . , n}
and the set of edges is defined so that Ei is mutually independent of {Ej |(i, j) /∈ E} (that is, every
event Ei is mutually independent with its set of non-neighbors).

Lovász Local Lemma: If there exists a real number 0 ≤ p < 1 so that a set of events E1, E2, ..., En

satisfies

1. Pr(Ei) < p ∀i,

2. the max degree in the dependency graph is d,

3. and, 4dp ≤ 1,

then, Pr(
⋂n

i=1Ei) > 0.

Proof To prove the lemma, we’ll show that Pr(
⋂

i∈S Ei) > 0 and Pr(Ek|
⋂

i∈S Ei) ≤ 2p ∀k by induction
on |S|.

Basis: |S| = 1. Then,

Pr(Ei) = 1− Pr(Ei) > 1− p > 0.

Case 1 – there is no edge (k, i) in the dependency graph. Then:

Pr(Ek | Ei) = Pr(Ek) ≤ p

Case 2 – ∃ an edge (k, i) in the dependency graph. Then:

Pr(Ek | Ei) =
Pr(Ek

⋂
Ei)

Pr(Ei)
≤ p

1− p
< 2p (∀p < 1

4
)

11-1

Inductive step: Suppose we have some set T such that |T | < s, where Pr(
⋂

i∈T Ei) > 0 and Pr(Ek|
⋂

i∈T Ei) ≤
2p ∀k. First, we show that Pr(

⋂s
i=1Ei) > 0:

Pr(

s⋂
i=1

Ei) = Pr(E1) · Pr(E2 | E1) · Pr(E3 | E1 ∧ E2) · · ·Pr(Es | E1 ∧ E2 ∧ ... ∧ Es−1)

=

s∏
i=1

1− Pr(Ei |
i−1⋂
j=1

Ej)

≥

s∏
i=1

(1− 2p)

> 0

Now, we just need to show that Pr(Ek |
⋂

i∈S Ei) ≤ 2p. Consider splitting S into two subsets S1 and

S2. If S2 = S, then Pr(Ek |
⋂

i∈S2
Ei) = Pr(Ek) ≤ p, by the inductive hypothesis. So, we’ll assume that

S2 ⊂ S. We define three sets

FS =
⋂
i∈S

Ei, FS1
=
⋂
i∈S1

Ei, FS2
=
⋂
i∈S2

Ei.

Then, we see that

Pr(Ek|FS) =
Pr(Ek ∧ FS)

Pr(FS)

=
Pr(Ek ∧ FS1

|FS2
)Pr(FS2

)

Pr(FS1
|FS2

)Pr(FS2
)

=
Pr(Ek ∧ FS1 |FS2)

Pr(FS1
|FS2

)

where we can compute

Pr(Ek ∧ FS1
|FS2

) ≤ Pr(Ek|FS2
)

≤ Pr(Ek)

≤ p.

Also,

Pr(FS1
|FS2

) = 1− Pr

(⋃
i∈S1

Ei|FS2

)
≥ 1−

∑
i∈S1

Pr(Ei|FS2
) by the union bound

≥ 1−
∑
i∈S1

2p by the inductive hypothesis (|S2| < |S|)

≥ 1− 2dp ≥ 1

2
by assumption

Thus, Pr(Ek|ES) ≤ 2p.

11-2

k-SAT

The first application of the Lovász Local Lemma that we will explore is k-SAT; given a k-SAT formula with
n variables and m clauses, we will determine conditions under which we can guarantee that the formula has
a satisfying assignment.

Theorem 1. If no variable appears in more than T = 2k

4k clauses, then the formula has a satisfying assign-
ment.

Proof Consider a random assignment where each variable is true with probability 1
2 independently. Let

Ei be the event that clause i is not satisfied.

• p = Pr(Ei) = 2−k

• Ei is mutually independent of clauses that don’t share variables

Thus, d ≤ kT = 2k−2, so 4dp ≤ 22 ·2k−2 ·2−k ≤ 1. Thus, by the Lovász Local Lemma, Pr(
⋂m

i=1Ei) > 0–
that is, there exists a satisfying assignment to the k-SAT instance.

Packet Routing

In this problem, we are given a undirected graph G = (V,E), and also a set of n packets p1, . . . , pn that will
be routed through G. Each packet pi has a start vertex si, a destination vertex ti, and a specific si, ti path
Pi. Vertices act as queues of packets, and packets move synchronously across edges. At every time step,
at most one vertex can traverse each edge. Our goal is to develop a schedule dictating when each packet
moves/waits, which minimizes the total time for all packets to get from their start to destination.

Let’s define two parameters relevant to the efficiency of any schedule. The dilation is

d = max
i
{ distance from si to ti }

and the congestion is
c = max

e
{ number of paths that use edge e }.

Note that any schedule must take time Ω(max(c, d)) and we can easily find one with time O(cd). We will
show that there exists a schedule of time O((c+ d)(1 + α)log

∗(c+d)), where α > 1 is a constant to be chosen,
and log∗(c+ d) ≤ 6 for all practical purposes (for all c+ d ≤ 100001000), so this is basically optimal.

Approach: To simplify the calculations, let’s assume d = max(c, d), since our claimed solution is in terms
of (c + d) = O(max(c, d)). Our approach is that we will set an initial delay of at most αd for each packet,
so that it will first wait this long, and then move along its path, one edge at each time step. We will
simultaneously guarantee that if we pick the delays correctly, then each packet will not have to wait at all
while moving along its path, and that all packets will be able to move concurrently.

Recursive solution: We will solve this problem recursively, by dividing the time steps {1, . . . , (1+α)d} into
phases of length log d, and then solving the problems on each phase, and combining the solutions together.
To pass to the recursive call, we will modify the packets’ routes by supposing they start somewhere along
their path, and then they move at most log d steps along their path. We then can easily piece together these
intermediate start/destination vertices, since they will be defined so that the packet starts where it ended
the phase before.

11-3

The remaining challenge then is to show that in any phase, there exists a schedule (i.e., a way to set the
delays) so that the congestion along any edge is also at most log d. If so, then we have a proper recursive
call, because the total time, the dilation, and the congestion, have all become log d. The base case of the
recursion will be when there is only a single time step, and in that case since each edge has congestion 1, we
just move the packets one edge ahead.

Schedule analysis: Before we prove the bound on the congestion in each phase, let’s show how to prove
the claimed result. At each step in the recursion, the total time needed grows by a factor of (1 +α), and the
initial time was at most (c+ d). To recurse down to a single time step, we need log∗(c+ d) recursive calls.
This proves our claim. Now back to the technical part.

Claim In each phase of length log d, there exists a set of delays for the packets so that the max congestion
over any edge is at most log d.

Proof We proceed using the probabilistic method, namely showing that with positive probability under
some distribution over the delays, the congestion won’t be too big. We will sample a delay independently for
each packet uniformly from {1, 2, . . . , αd}. Once the delays are set, we will recursively construct a schedule
for each packet which has unit post-delay congestion, so we only have to worry about the total congestion
of the phase.

Let’s set up to use the Lovasz local lemma. Fix a phase and let Ae be the event that edge e has congestion
greater than log d. Since a packet’s path is fixed post-delay, the chance that any pi uses e at time any fixed
time t is 1/(αd). We bound Pr[Ae] using the Chernoff bound. The number of packets that use e is at most
d, there at log d time steps in this phase, and the probability for each packet, in each time step, to use e is
1/(αd), so

E[#edges using e] ≤ d · log d · 1

αd
=

log d

α
.

Then, by chernoff, with δ = α− 1 and µ = (log d)/α,

Pr[#edges using e ≥ log d] = Pr[#edges using e ≥ (1 + (α− 1))
log d

α
] ≤

(e
α

)log d
≤ d−4

α
,

where the last inequality follows by setting α = e11 and assuming that d ≥ e11/6. Then, since there are at
most αd phases, we have by the union bound that

Pr[Ae] ≤ d−3.

Now the dependency graph. For edges e and f , the events Ae and Af are independent unless the same
packet traverses both e and f along its path. At most cd ≤ d2 other edges are dependent on Ae, since each
path has length d, and the number of paths that overlap at e is at most c. Therefore, the conditions for the
Lovasz local lemma are satisfied, and thus Pr[

⋂
eAe] > 0, that is there exists a set of initial delays so that

each edge has congestion at most log d. And as we argued above, this concludes the entire analysis.

11-4

Exercises

1. Generalized Lovasz Local Lemma. Let A1, . . . , An be a set of bad events, and let Di ⊆
{A1, . . . , An} denote the dependency set of Ai, i.e., Ai is mutually independent of all events not
in Di. If there exists a set of real numbers x1, . . . , xn ∈ [0, 1) such that

Pr[Ai] ≤ xi
∏
j∈Di

(1− xj)

for all i, then

Pr[

n⋂
i=1

Ai] ≥
n∏

i=1

(1− xi) > 0.

Note that if you set xi = 1
d+1 where d is the degree of the dependency graph, then you recover

the symmetric version we proved in class. Also, note that the solution to this exercise is a fairly
straightforward manipulation of the proof we saw in class.

2. Structured bichromatic edge coloring. Let Kn denote the complete (undirected) graph on n
vertices. Show that if

4

(
k

2

)(
n

k − 2

)
21−(k

2) ≤ 1,

then it is possible to color the edges of Kn with two colors so that it has no monochromatic Kk

subgraph, that is, no clique of size k in the colored Kn with all
(
k
2

)
edges assigned the same color. Note

that trying to color the graph in the case of n = 6 and k = 3 is an excellent puzzle.

11-5

