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1 Follow the regularized leader

As with offline optimization, there are numerous algorithms with convergence rates that depend on
properties of the function to be optimized. We will now develop another online convex optimization
algorithm that achieves better bounds in some cases, and unifies a number of disparate results in
the field.

Here are some key references: [Shalev-Shwartz 2007] [Abernethy, Hazan and Rakhlin, 2008]

The following algorithm unifies many of the ideas that had been used prior for online convex
optimization.

Definition 1.1. The Follow the Regularized Leader (FTRL) strategy is to set

wt+1 = argminw∈S

[
η

t∑
s=1

`s(w) +R(w)

]
,

where R(·) is a strongly convex regularizer (see definition below).

Many of you are familiar with regularization as a technique for avoiding overfitting. The idea is
that models that overfit the data are too complicated, e.g. have too many parameters. One way to
penalize this complexity is to add a ”regularization” term to the loss function that penalizes more
complex models.

Here the regularization term is playing a similar role. It’s going to help ensure stability, so that
these points that we play don’t move around too fast.

1.1 Digression on some basic convex optimization related definitions

1.1.1 Strong convexity and smoothness

Definition 1.2. Let f : S → R be a convex function, where S is a convex set. Then f(·) is
β-strongly convex w.r.t. norm || · || if for all u,v ∈ S

f(v) ≥ f(u) +∇f(u) · (v − u) +
β

2
||u− v||2.

In other words, the function grows faster than linearly in every direction.

Definition 1.3. Suppose that R is a convex function, Then the Bregman divergence Bf (x||y)
is defined as follows

Bf (x||y) = f(x)− f(y)−∇f(y) · (x− y)
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The Bregman divergence from x to y is the difference between f(x) and its linear approximation
via the first-order Taylor expansion of f around y. Since the function is convex, this is always
nonnegative. It is not symmetric, but behaves in many ways like a distance function.

Remark 1.4. We can rewrite the definition of β-strongly convex as follows:

Bf (u||v) ≥ β

2
||u− v||2. (1)

The following are immediate consequences of the definition of a strongly convex function.

Claim 1.5. Suppose that f(·) is β strongly convex. Then

• If g is convex, then f + g is β strongly convex.

• The function cf is cβ strongly convex.

• If u is a minimizer of f , then for all w

f(w)− f(u) ≥ λ

2
||w − u||2.

Definition 1.6. Let f : S → R be a convex function, where S is a convex set. Then f(·) is
α-smooth w.r.t. norm || · || if for all u,v ∈ S

f(v) ≤ f(u) +∇f(u) · (v − u) +
α

2
||u− v||2.

Claim 1.7. 1. If f(·) is β-strongly convex with respect to the Euclidean norm, then

∇2R � βI.

2. If f(·) is α-smooth, then
∇2R � αI.

1.2 Digression on dual norms

We all know the importance of the Cauchy-Schwartz inequality for the 2-norm. There is a classic
generation known as Holder’s inequality.

(x,y) ≤ ||x||p||y||q

where
1

p
+

1

q
= 1.

Recall that

||x||p =

(∑
i

|xi|p
)1/p

.

Motivates the following general definition.
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Definition 1.8. Let || · || denote a norm.1 Then the dual norm

||y||∗ := max
||x||≤1

(x,y).

For example, the dual norm to the 2-norm is the 2-norm. From Holder’s inequality it is easy to
show that the dual norm to the p-norm is the q norm where 1/p+ 1/q = 1. For example, the dual
norm to the 1-norm is the infinity norm. Consider the matrix norm ||x||A, where A is p.s.d. defined
by

||x||A :=
√

xTAx.

Then the dual norm is ||x||A−1 .

Proposition 1.9. By the definition of the dual norm, for any norm || · ||,

(x,y) ≤ ||x|| · ||y||∗.

Definition 1.10. A function f : S → R is L-Lipschitz with respect to norm || · || if for any u,v ∈ S,

f(u)− f(v) ≤ L||u− v||.

Claim 1.11. Fix a convex continuous function ` : S → R. Assume S is full dimensional. Then
`(·) is L-Lipschitz over S with respect to norm || · || iff for all w in the interior of S and z ∈ ∂`(w),
we have ||z||∗ ≤ L, where || · ||∗ is the dual norm.

Proof. Suppose that ` is Lipschitz. Pick w and z as in statement. let u such that

u−w = argmaxv | ||v||=1(v, z).

Then
(u−w, z) = ||z||∗.

By the definition of a subgradient

||z||∗ = (z,u−w) ≤ `(u)− `(w) ≤ L||u−w|| = L.

For the other direction, since z is a subgradient at w, we have

`(w)− `(u) ≤ (z,w − u) ≤ ||z||∗||w − u|| ≤ L||w − u||.

Therefore ` is L-Lipschitz.

1.3 Back to FTRL

Recall the definition

1We are talking about norms n(·) over Rn. Such norms are required to satisfy the following for any constant c,
and two vectors u and v: (a) n(v) ≥ 0, (b) n(cv) = |c|n(v), (c) triangle inequality, (e) n(0) = 0.
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Definition 1.12. The Follow the Regularized Leader (FTRL) strategy is to set

wt+1 = argminw∈S

[
η

t∑
s=1

`s(w) +R(w)

]
,

where R(·) is a strongly convex regularizer.

Lemma 1.13. Suppose that R(·) is a β strongly convex regularizer with respect to some norm || · ||.
Let

Gt := ||∇`t(wt)||∗.

Then

`t(wt)− `t(wt+1) ≤ Gt||wt −wt+1|| ≤
ηG2

t

β
.

Proof. Define

Ft(w) =
t−1∑
i=1

`i(w) +
R(w)

η
.

By definition
wt = argminw∈SFt(w).

Since Ft is β/η strongly convex, then by Lemma 1.5, we have

Ft(wt+1) ≥ Ft(wt) +
β

2η
||wt −wt+1||2

Ft+1(wt) ≥ Ft+1(wt+1) +
β

2η
||wt −wt+1||2

Adding these up we get

`t(wt)− `t(wt+1) ≥
β

η
||wt −wt+1||2.

We also have

`t(wt)− `t(wt+1) ≤ (∇`t,wt −wt+1) ≤ ||∇`t(wt)||∗||wt −wt+1|| = Gt||wt −wt+1||,

so

||wt −wt+1|| ≤
Gtη

β

and we get the lemma.

We now use this in the BTL-FTL lemma, which you recall implied that

T∑
t=1

(`t(wt)− `t(u)) ≤
T∑
t=1

(`t(wt)− `t(wt+1))

We can similarly show that for FTRL
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Lemma 1.14.

T∑
t=1

(`t(wt)− `t(u)) ≤ R(u)−R(w1)

η
+

T∑
t=1

(`t(wt)− `t(wt+1)

Proof. FTRL is exactly like FTL with an extra round where in step 0, the loss function is R(x)/η.
Applying the BTL lemma (with `0 = R/η for FTRL). Therefore, we have

−
T∑
t=0

`t(u) ≤ −
T∑
t=0

`t(wt+1).

Adding
∑T

t=0 `t(wt) to both sides we get

T∑
t=0

(`t(wt)− `t(u)) ≤
T∑
t=0

(`t(wt)− `t(wt+1).

Thus, with f0 := R/η, we have

T∑
t=1

(`t(wt)− `t(u)) + f0(w0)− f0(u) ≤
T∑
t=1

(`t(wt)− `t(wt+1) + f0(w0)− f0(w1)

or equivalently.

T∑
t=1

(`t(wt)− `t(u)) ≤ R(u)−R(w1)

η
+

T∑
t=1

(`t(wt)− `t(wt+1)

Combining the previous two lemmas, we get the following corollary.

Corollary 1.15. Suppose that the regularizer R(·) is β-strongly convex and `1, `2, . . . are arbitrary
convex losses with respect to some norm. Then

RegretT (u) ≤ R(u)−minw∈S R(w)

η
+

T∑
t=1

η||∇`t(wt)||2∗
β

,

for all u ∈ S.

If `t is Lt Lipschitz for each t, then by Corollary 1.11, we can also say that

RegretT (u) ≤ R(u)−minw∈S R(w)

η
+

T∑
t=1

ηL2
t

β
,

for all u ∈ S.

Proof. The first part follows immediately from plugging the result of Lemma 1.13 into Lemma 1.14.
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The second part follows by observing that we can use the fact that boundedness of gradients of `t
w.r.t. || · ||∗ equivalent to Lipschitzness of `t w.r.t. || · ||, as per Claim 1.11. For concreteness here:
||∇`t(wt)||∗ is a lower bound on the Lipschitz constant of `. Indeed, let u such that

u−wt = argmaxv|||v||=1(v,∇`t(wt)) = ||∇`t(wt)||∗.

Then
||∇`t(wt)||∗ = (∇`t(wt),u−wt) ≤ `t(u)− `t(wt) ≤ Lt||u−wt|| = Lt.

Corollary 1.16. Suppose that maxt Lt ≤ L and
√

supu,w∈S R(u)−R(w) = D. Then optimizing

over η gives

RT (u) ≤ 2LD√
β

√
T .

Remark 1.17. This gives us some clue as to how we want to choose the regularizer and the norm.
There are two factors that we trade off, the diameter D of the underlying space, and the choice of
a norm for which the losses have small Lipschitz constant.

2 Applications of FTRL

2.1 Euclidean regularization = Online gradient descent (for linear optimization)

Choose

R(w) =
1

2
||w||22.

Suppose that
`t(w) = (w, zt).

Then when you solve for

∇

(
t∑

i=1

(w, zi) +
1

2η
||w||22

)
= 0

to get wt+1, you get

wt+1 = −η
t∑

i=1

zi = wt − ηzt = wt − η∇`t(wt).

If wt+1 is not in S, then one can show (you should check this) that

argminw∈S

[
η

t∑
i=1

(w, zi) +
1

2
||w||22

]
,

is obtained by finding the closest point in S to wt+1 (closest in Euclidean distance). Thus, FTRL
with Euclidean regularization is Online Gradient Descent.
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Corollary 2.1. Consider OGD with loss functions that are linear, specifically `t(w) = (w, zt), and
suppose that

S = {w | ||w||2 ≤ B} and
1

T

T∑
t=1

||zt||22 ≤ L2.

Then for all u
RegretT (u) ≤

√
2LB
√
T .

Proof. By Corollary 1.16, with R(w) = 1
2 ||w||

2
2, we have β = 1 and D =

√
maxu,vR(u)−R(v) =

B/
√

2. Also, since `t(·) is Lipschitz with Lt = ||zt||2, and
∑T

t=1 ||zt||22 ≤ L2T , this corollary follows
from Corollary 1.16.

Remark 2.2. Consider OGD applied to the experts problem with losses in [0, 1]. This means that
S is the probability simplex in n dimensions, and `t(w) = (`t,w), where `t ∈ [0, 1]n. Then L =

√
n

and B = 1/
√

2. Thus, the regret bound becomes
√

2nT .

Next we generalize the result to to allow any sequence of Lipschitz functions rather than linear
functions with bounded norm.

2.2 Using the loss gradient

For all practical purposes, we only ever need to deal with linear functions, since we can linearize
the convex losses.

`t(wt)− `t(u) ≤ ∇`t(wt) ·wt −∇`t(wt) · u
= ∇t ·wt −∇t · u,

where
∇t := ∇`t(wt).

Let R(·) be a strongly convex regularizer and η > 0 is a scale parameter. The Follow the
Regularized Leader (FTRL) with linearized loss strategy becomes the following:

wt+1 = argminw∈S

[
t∑

s=1

η ∇s ·w +R(w)

]
,

= argminw∈S [−θt+1 ·w +R(w)] ,

where

−θt+1 := η

t∑
s=1

∇s.

2.2.1 FTRL = OGD for general convex functions

Again choose

R(w) =
1

2
||w||22.

Then as above, this algorithm specializes to OGD.
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Lemma 2.3. Consider OGD with general convex loss functions and suppose that

S = {w | ||w||2 ≤ B} and
1

T

T∑
t=1

||∇`t(wt)||22 ≤ L2.

Then for all u
RegretT (u) ≤

√
2LB
√
T .

Proof. Same as before.
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