
CSE 522: Algorithms and Uncertainty Spring 2017

Lecture 6 — April 14, 2017

Lecturer: Nikhil R. Devanur

In this class, we will discuss applications of the experts problem.

1 Zero sum games

A zero sum game is a simultaneous move game between 2 players. Such a game is represented
by a matrix A ∈ Rm×n. The strategies of the “row” (resp. “column”) player are the rows (resp.
columns) of A. If the row player plays strategy i ∈ [m] and the column player plays j ∈ [n] then the
outcome is Aij .

1 Interpret this as that the row player pays Aij amount of money to the column
player, therefore the row player tries to minimize Aij while the column player tries to maximize it.

The players may randomize their strategies; in this case we will let x and y denote the row and the
column strategies respectively, with x(i) and y(j) denoting the probability of playing i ∈ [m] and
j ∈ [n] resp. Let the simplex in Rd be denoted by

∆d := {x ∈ Rd :
∑
i

x(i) = 1, ∀i, x(i) ≥ 0}.

Then x ∈ ∆m and y ∈ ∆n. A deterministic strategy that picks a row i (resp. column j) is represented
by the unit vector ei (resp. ej). The expected outcome of the game when the strategies are x and y
is

x>Ay.

(We think of a vector in n dimensions as an n × 1 matrix, and vice versa.) Suppose one of the
players “moves first”, which means that she announces her randomized strategy. The other player
can then pick her strategy having known her opponents randomized strategy; we say that this player
“moves second”.

Exercise 1. Show that for the player who moves second, randomized strategies are no better than
deterministic strategies, i.e.,

∀x ∈ ∆m, max
y∈∆n

x>Ay = max
j∈[n]

x>Aej .

∀y ∈ ∆n, min
x∈∆m

x>Ay = min
i∈[m]

e>i Ay.

For any given randomized strategy for the opponent, we call the strategy that optimizes the payoff
as the best response to that strategy (i.e., the arg min/arg max in the above). Notation:

λmin := min
x∈∆m

max
y∈∆n

x>Ay.

λmax := max
y∈∆n

min
x∈∆m

x>Ay.

1The notation [n] is a shorthand for the set {1, 2, . . . , n}.
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λmin (resp. λmax) is the outcome when the row (resp. column) player moves first, and both players
pick their strategies optimally. Moving second is always advantageous.This means that

λmin ≥ λmax. (1)

Exercise 2. Prove Inequality (1).

The main result regarding zero sum games is that moving first is not a disadvantage.

Theorem 1 (vonNeumann’s Minmax Theorem).

λmin = λmax = λ∗.

We call λ∗ as the value of the game.

We will prove this theorem using the regret bound for the experts problem (Theorem 4 in Lecture
5).

1.1 Reduction from zero sum games to experts

Given an instance of a zero sum game (i.e., the payoff matrix A), we define an instance of the experts
problem. The set of experts is the set of rows of A, i.e., the set [m]. Recall that in round t, the
experts algorithm plays expert i with probability wt(i)/Wt; this can be thought of as a randomized
strategy for the row player. Denote the best response of the column player to this strategy by

jt := arg max
j∈[n]

w>t Aej . (2)

Define the losses in round t as the jtth column of A, i.e.,

`t(i) := Aijt .

Run the experts algorithm for T rounds. This completes the description of the instance of the
experts algorithm.

Lemma 1. In every round, the expected loss of the algorithm is at least as large as the min-max
value. For all t ∈ [T ],

`t(alg) ≥ λmin.

Proof. Recall that λmin is the value of the game when the row player moves first, and plays optimally.
For any round t, we have that `t(alg) is the value of the game when the row player plays some
strategy (given by wt) and the column player best responds. This can therefore only be larger than
λmin.

Lemma 2. The average loss of the best fixed expert/strategy on hindsight is no larger than the
max-min value.

λmax ≥ min
i∈[m]

T∑
t=1

1

T
`t(i).
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Proof. The RHS corresponds to the payoff of the game when the column player moves first, plays
the strategy corresponding to the empirical distribution of the jts, and the row player best responds.
(The empirical distribution is the one that picks jt with probability 1/T , for each t ∈ T .) This
is no larger than the payoff for the optimal column player strategy when he moves first, which is
λmax.

Proof of theorem 2. From Lemmas 1, 2 and Theorem 1, we have that λmin and λmax are sandwiched
between the two terms that define the regret of the experts problem.

1

T
`1..T (alg) ≥ λmin ≥ λmax ≥

1

T
min
i∈[m]

`1..T (i).

From Theorem 4 in Lecture 5 we know that the difference between the first and the last term in the
above sequence goes to 0 as T →∞. Hence the terms in the middle have to be the same.

We now show how to actually read off approximately optimal strategies for the row and the column
player. Suppose that T is such that regret/T ≤ ε. Then we will find row and column player
strategies x′ and y′ such that

max
y∈∆n

x′>Ay ≤ λ∗ + ε.

min
x∈∆m

x>Ay′ ≥ λ∗ − ε.

Note that for the column player the empirical distribution over the jts is approximately optimal.
(This follows from the proof of Theorem 2.) For the row player, let t∗ be the time index with the
smallest loss for alg:

t∗ := arg min
t∈T

`t(alg).

Define x′ = wt∗/Wt∗ and observe that maxy∈∆n x′>Ay = `t∗(alg). Once again, from the proof of
Theorem 2, it follows that this is at most λ∗ + ε.

We will use a generalization of Theorem 2, where the strategies could be arbitrary convex sets. Let
K1 ⊆ Rm and K2 ⊆ Rn be convex sets.2

Theorem 2 (vonNeumann’s Minmax Theorem). For any two convex sets K1 ⊆ Rm and K2 ⊆ Rn,
and a matrix A ∈ Rm×n+ ,

min
x∈K1

max
y∈K2

x>Ay = max
y∈K2

min
x∈K1

x>Ay = λ∗.

2 Linear Programs

Linear Programs (LPs) are widely used in optimization. We will consider a special form of an LP
here, for the sake of simplicity. There are n variables in the LP, which we will denote by y. (The
individual variables are y(i),∀ i ∈ [n].) The input is a matrix A ∈ Rm×n, a vector b ∈ Rm, and
a convex set K. The set K is supposed to capture the “easy” constraints. This is formalized by

2A set K is convex iff for any two points x, y ∈ K, the entire line joining x and y is contained in K.
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saying that we can optimize linear functions over K, i.e., we can solve the following optimization
problem, for any given vector c ∈ Rn.

max
y∈K

c · y. (3)

The input A and b capture the hard constraints which are of the form

Ay ≥ b.

The problem is to determine whether all the constraints can be simultaneously satisfied or not. The
output of the problem is supposed to be

• yes, if there exists a solution that satisfies y ∈ K and Ay ≥ b.

• no, otherwise.

We will make the following assumption, due to which our LP will not be the most general. This is
mostly for the sake of simplicity.

Assumption 1. All co-ordinates of b are strictly positive. With this assumption, we can normalize
each of the constraints and assume without loss of generality that b is the all ones vector.

2.1 Reduction from LP to zero sum games

We will reduce this to a zero sum game. Define the following instance of a zero sum game, given
an instance of an LP as above. The row player strategy set is K1 = [m], and the column player
strategy set is K2 = K. The payoff matrix is A. Let λ∗ be the value of this game.

Lemma 3. The LP instance is feasible if and only if λ∗ ≥ 1.

Proof. Suppose that the LP is feasible. Let y∗ ∈ K be one feasible solution. Suppose the column
player’s strategy is y∗. Then no matter what i ∈ [m] the row player picks, the ith coordinate of Ay∗

is at least 1, since y∗ is feasible. Therefore the value of the game is at least 1.

Suppose that the LP is infeasible. Let y∗ ∈ K be the optimal column player strategy. Then by
definition,

min
i∈[m]

e>i Ay
∗ = λ∗.

Since the LP is infeasible, there must exist at least one coordinate of Ay∗ which is less than 1.
Therefore the min in the above equation must be less than 1.

Since we know how to solve zero-sum games using experts, we can in turn solve the LP using experts
too. For this, we will further assume the following boundedness property: ∀ x ∈ K,Ax ∈ [0, a], for
some given a ∈ R+. Consider combining the LP to zero sum game reduction, and the zero sum
game to experts reduction. The set of experts will then be the rows of A. In order to define the
`t(·)s, recall that we need to be able to solve the optimization problem as specified in (2), which in
this case translates to the following optimization problem.

yt = arg max
y∈K

w>t Ay = arg max
y∈K

(A>wt) · y.
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This is exactly the kind of problem we assumed was easy to solve, in (3).

Consider a run of the experts problem on this instance given by the reduction.

• If in any round t ∈ [T ], it turns out that lt(alg) < 1, then output no. This is because this
implies (from Lemma 1) that λ∗ < lt(alg) < 1, and then from Lemma 3 we know that the
LP is infeasible.

• If in all rounds t ∈ [T ], lt(alg) ≥ 1, then output y′ = 1
T

∑
t∈[T ] yt. Then from the regret

bound, it follows that

min
i∈[m]

e>i Ay
′ ≥ 1

T
`1..T (alg)− ε ≥ 1− ε.

This implies that y′ is approximately feasible, i.e., it violates each constraint by at most ε.

3 Boosting

Recall the PAC learning setting: there is a distribution D over examples of feature and label pairs
(x, y). The goal is to accurately predict the label y given the feature x. We define a “weak learner”
and a “strong learner” as algorithms whose errors are slightly better than a random guess, and
almost perfect, respectively.

Definition 1. A weak (resp. strong) learner is an algorithm that given any distribution D (explicit,
or with sample access), outputs a hypothesis halg such that for some γ > 0 (resp. ε > 0),

errD(halg) ≤ 1

2
− γ (resp. ≤ ε).

In particular, suppose that we have a given training set of examples,

{(x1, y1), (x2, y2), . . . , (xm, ym)},

and the distribution given to the strong learner is the empirical distribution over these examples.

For the weak learner we will assume that halg is in some given set of hypothesis H, and for the
strong learner,

halg = wt-majority(H, ·, w(·)),

for some set of weights w(·).

3.1 Reduction from Boosting to zero sum games

We would like to obtain a strong learner given a weak learner Why do we even hope to achieve
this? A reduction to zero sum games shows this is possible, and the reduction to experts gives an
algorithm!

Consider a zero sum game where the row player (deterministic) strategies are the hypothesis in
H, and column player strategies are the training set examples. The payoff of the game, given a
hypothesis h and an example (x, y) is

1(h(x) 6= y).
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For any distribution on the training set D, and any hypothesis h ∈ H, when the row player strategy
is D and the column player strategy is h, the expected payoff of the game is precisely errD(h). Let
λ∗ as usual denote the value of this game. The weak learning guarantee implies a bound on λ∗:
since we know that for all distributions D, there exists an h ∈ H such that errD(h) ≤ 1

2 − γ, it
implies that

λ∗ = max
D

min
h∈H

errD(h) ≤ 1

2
− γ.

This now implies that there exists a probability distribution α(·) over the hypothesis set H such that

max
i∈[m]

Ph∼α[h(xi) 6= yi] = λ∗ ≤ 1

2
− γ.

In other words (or rather, symbols)

∀i ∈ [m],
∑
h∈H

α(h)1(h(xi) 6= yi) ≤
1

2
− γ ≤ 1

2
+ γ ≤

∑
h∈H

α(h)1(h(xi) = yi),

since α(·) is a probability distribution and therefore
∑

h∈H α(h) = 1. This means that the weighted
sum of hypothesis that predict the correct label is always higher than those that predict the incorrect
label. Hence

∀i ∈ [m],wt-majority(H, xi, α(·)) = yi.

This says that there is a weighted majority that predicts correctly on all the examples in the
training set. Since this is an optimal strategy for a zero sum games, we can hope to actually find an
approximately optimal strategy for this game using the experts algorithm.

Recall that in order to run the experts algorithm we need to be able to solve the optimization
problem in (2). Since the row player strategy set is a probability distribution α(·) over the set H,
and the column player strategy set is [m], this translates to finding

max
i∈[m]

Ph∼α[h(xi) 6= yi].

This doesn’t seem like a problem we know how to solve. Moreover, the hypothesis set H maybe too
large for us to run the experts algorithm efficiently.

Exercise 3. Show how to solve the boosting problem using the experts algorithm.
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